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Foreword

Hadoop got its start in Nutch. A few of us were attempting to build an open source web
search engine and having trouble managing computations running on even a handful
of computers. Once Google published its GFS and MapReduce papers, the route became
clear. They’d devised systems to solve precisely the problems we were having with Nutch.
So we started, two of us, half-time, to try to re-create these systems as a part of Nutch.

We managed to get Nutch limping along on 20 machines, but it soon became clear that
to handle the Web’s massive scale, we'd need to run it on thousands of machines, and
moreover, that the job was bigger than two half-time developers could handle.

Around that time, Yahoo! got interested, and quickly put together a team that I joined.
We split off the distributed computing part of Nutch, naming it Hadoop. With the help
of Yahoo!, Hadoop soon grew into a technology that could truly scale to the Web.

In 2006, Tom White started contributing to Hadoop. I already knew Tom through an
excellent article he’d written about Nutch, so I knew he could present complex ideas in
clear prose. I soon learned that he could also develop software that was as pleasant to
read as his prose.

From the beginning, Tom’s contributions to Hadoop showed his concern for users and
for the project. Unlike most open source contributors, Tom is not primarily interested
in tweaking the system to better meet his own needs, but rather in making it easier for
anyone to use.

Initially, Tom specialized in making Hadoop run well on Amazon’s EC2 and S3 services.
Then he moved on to tackle a wide variety of problems, including improving the Map-
Reduce APIs, enhancing the website, and devising an object serialization framework.
In all cases, Tom presented his ideas precisely. In short order, Tom earned the role of
Hadoop committer and soon thereafter became a member of the Hadoop Project Man-
agement Committee.
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Tom is now a respected senior member of the Hadoop developer community. Though
he’s an expert in many technical corners of the project, his specialty is making Hadoop
easier to use and understand.

Given this, I was very pleased when I learned that Tom intended to write a book about
Hadoop. Who could be better qualified? Now you have the opportunity to learn about
Hadoop from a master—not only of the technology, but also of common sense and
plain talk.

—Doug Cutting, April 2009
Shed in the Yard, California

xviii | Foreword



Preface

Martin Gardner, the mathematics and science writer, once said in an interview:

Beyond calculus, I am lost. That was the secret of my column’s success. It took me so long
to understand what I was writing about that I knew how to write in a way most readers
would understand.'

In many ways, this is how I feel about Hadoop. Its inner workings are complex, resting
as they do on a mixture of distributed systems theory, practical engineering, and com-
mon sense. And to the uninitiated, Hadoop can appear alien.

But it doesn’t need to be like this. Stripped to its core, the tools that Hadoop provides
for working with big data are simple. If there’s a common theme, it is about raising the
level of abstraction—to create building blocks for programmers who have lots of data
to store and analyze, and who don’'t have the time, the skill, or the inclination to become
distributed systems experts to build the infrastructure to handle it.

With such a simple and generally applicable feature set, it seemed obvious to me when
I started using it that Hadoop deserved to be widely used. However, at the time (in early
2006), setting up, configuring, and writing programs to use Hadoop was an art. Things
have certainly improved since then: there is more documentation, there are more ex-
amples, and there are thriving mailing lists to go to when you have questions. And yet
the biggest hurdle for newcomers is understanding what this technology is capable of,
where it excels, and how to use it. That is why I wrote this book.

The Apache Hadoop community has come a long way. Since the publication of the first
edition of this book, the Hadoop project has blossomed. “Big data” has become a house-
hold term.? In this time, the software has made great leaps in adoption, performance,
reliability, scalability, and manageability. The number of things being built and run on
the Hadoop platform has grown enormously. In fact, it’s difficult for one person to keep

1. Alex Bellos, “The science of fun,” The Guardian, May 31, 2008.
2. It was added to the Oxford English Dictionary in 2013.
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track. To gain even wider adoption, I believe we need to make Hadoop even easier to
use. This will involve writing more tools; integrating with even more systems; and writ-
ing new, improved APIs. I'm looking forward to being a part of this, and I hope this
book will encourage and enable others to do so, too.

Administrative Notes

During discussion of a particular Java class in the text, I often omit its package name to
reduce clutter. If you need to know which package a class is in, you can easily look it up
in the Java API documentation for Hadoop (linked to from the Apache Hadoop home
page), or the relevant project. Or if you're using an integrated development environment
(IDE), its auto-complete mechanism can help find what you're looking for.

Similarly, although it deviates from usual style guidelines, program listings that import
multiple classes from the same package may use the asterisk wildcard character to save
space (for example, import org.apache.hadoop.i0.*).

The sample programs in this book are available for download from the booK’s website.
You will also find instructions there for obtaining the datasets that are used in examples
throughout the book, as well as further notes for running the programs in the book and
links to updates, additional resources, and my blog.

What’s New in the Fourth Edition?

The fourth edition covers Hadoop 2 exclusively. The Hadoop 2 release series is the
current active release series and contains the most stable versions of Hadoop.

There are new chapters covering YARN (Chapter 4), Parquet (Chapter 13), Flume
(Chapter 14), Crunch (Chapter 18), and Spark (Chapter 19). There’s also a new section
to help readers navigate different pathways through the book (“What’s in This Book?”
on page 15).

This edition includes two new case studies (Chapters 22 and 23): one on how Hadoop
is used in healthcare systems, and another on using Hadoop technologies for genomics
data processing. Case studies from the previous editions can now be found online.

Many corrections, updates, and improvements have been made to existing chapters to
bring them up to date with the latest releases of Hadoop and its related projects.

What's New in the Third Edition?

The third edition covers the 1.x (formerly 0.20) release series of Apache Hadoop, as well
as the newer 0.22 and 2.x (formerly 0.23) series. With a few exceptions, which are noted
in the text, all the examples in this book run against these versions.
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This edition uses the new MapReduce API for most of the examples. Because the old
API is still in widespread use, it continues to be discussed in the text alongside the new
API, and the equivalent code using the old API can be found on the book’s website.

The major change in Hadoop 2.0 is the new MapReduce runtime, MapReduce 2, which
is built on a new distributed resource management system called YARN. This edition
includes new sections covering MapReduce on YARN: how it works (Chapter 7) and
how to run it (Chapter 10).

There is more MapReduce material, too, including development practices such as pack-
aging MapReduce jobs with Maven, setting the user’s Java classpath, and writing tests
with MRUnit (all in Chapter 6). In addition, there is more depth on features such as
output committers and the distributed cache (both in Chapter 9), as well as task memory
monitoring (Chapter 10). There is a new section on writing MapReduce jobs to process
Avro data (Chapter 12), and one on running a simple MapReduce workflow in Oozie
(Chapter 6).

The chapter on HDFS (Chapter 3) now has introductions to high availability, federation,
and the new WebHDFS and HttpFS filesystems.

The chapters on Pig, Hive, Sqoop, and ZooKeeper have all been expanded to cover the
new features and changes in their latest releases.

In addition, numerous corrections and improvements have been made throughout the
book.

What’s New in the Second Edition?

The second edition has two new chapters on Sqoop and Hive (Chapters 15 and 17,
respectively), a new section covering Avro (in Chapter 12), an introduction to the new
security features in Hadoop (in Chapter 10), and a new case study on analyzing massive
network graphs using Hadoop.

This edition continues to describe the 0.20 release series of Apache Hadoop, because
this was the latest stable release at the time of writing. New features from later releases
are occasionally mentioned in the text, however, with reference to the version that they
were introduced in.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
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Constant width
Used for program listings, as well as within paragraphs to refer to commands and
command-line options and to program elements such as variable or function
names, databases, data types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a general note.

This icon signifies a tip or suggestion.

This icon indicates a warning or caution.

N

Using Code Examples

Supplemental material (code, examples, exercise, etc.) is available for download at this
book’s website and on GitHub.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.
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We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop: The Definitive Guide, Fourth Ed-
ition, by Tom White (O’Reilly). Copyright 2015 Tom White, 978-1-491-90163-2”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
1 D delivers expert content in both book and video form from

the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hadoop_tdg 4e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.
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CHAPTER 1
Meet Hadoop

In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log,
they didn't try to grow a larger ox. We shouldn’t be trying for bigger computers, but for
more systems of computers.

—Grace Hopper

Data!

We live in the data age. It’s not easy to measure the total volume of data stored elec-
tronically, but an IDC estimate put the size of the “digital universe” at 4.4 zettabytes in
2013 and is forecasting a tenfold growth by 2020 to 44 zettabytes."! A zettabyte is 10*
bytes, or equivalently one thousand exabytes, one million petabytes, or one billion
terabytes. That’s more than one disk drive for every person in the world.

This flood of data is coming from many sources. Consider the following:*

o The New York Stock Exchange generates about 4-5 terabytes of data per day.
o Facebook hosts more than 240 billion photos, growing at 7 petabytes per month.
o Ancestry.com, the genealogy site, stores around 10 petabytes of data.

o The Internet Archive stores around 18.5 petabytes of data.

1. These statistics were reported in a study entitled “The Digital Universe of Opportunities: Rich Data and the
Increasing Value of the Internet of Things”

2. All figures are from 2013 or 2014. For more information, see Tom Groenfeldt, “At NYSE, The Data Deluge
Overwhelms Traditional Databases”; Rich Miller, “Facebook Builds Exabyte Data Centers for Cold Stor-

age”; Ancestry.com’s “Company Facts”; Archive.org’s “Petabox”; and the Worldwide LHC Computing Grid
project’s welcome page.
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o The Large Hadron Collider near Geneva, Switzerland, produces about 30 petabytes
of data per year.

So there’s a lot of data out there. But you are probably wondering how it affects you.
Most of the data is locked up in the largest web properties (like search engines) or in
scientific or financial institutions, isn’t it? Does the advent of big data affect smaller
organizations or individuals?

I argue that it does. Take photos, for example. My wife’s grandfather was an avid pho-
tographer and took photographs throughout his adultlife. His entire corpus of medium-
format, slide, and 35mm film, when scanned in at high resolution, occupies around 10
gigabytes. Compare this to the digital photos my family took in 2008, which take up
about 5 gigabytes of space. My family is producing photographic data at 35 times the
rate my wife’s grandfather’s did, and the rate is increasing every year as it becomes easier
to take more and more photos.

More generally, the digital streams that individuals are producing are growing apace.
Microsoft Research’s MyLifeBits project gives a glimpse of the archiving of personal
information that may become commonplace in the near future. MyLifeBits was an ex-
periment where an individual’s interactions—phone calls, emails, documents—were
captured electronically and stored for later access. The data gathered included a photo
taken every minute, which resulted in an overall data volume of 1 gigabyte per month.
When storage costs come down enough to make it feasible to store continuous audio
and video, the data volume for a future MyLifeBits service will be many times that.

The trend is for every individual’s data footprint to grow, but perhaps more significantly,
the amount of data generated by machines as a part of the Internet of Things will be
even greater than that generated by people. Machine logs, RFID readers, sensor net-
works, vehicle GPS traces, retail transactions—all of these contribute to the growing
mountain of data.

The volume of data being made publicly available increases every year, too. Organiza-
tions no longer have to merely manage their own data; success in the future will be
dictated to a large extent by their ability to extract value from other organizations’ data.

Initiatives such as Public Data Sets on Amazon Web Services and Infochimps.org exist
to foster the “information commons,” where data can be freely (or for a modest price)
shared for anyone to download and analyze. Mashups between different information
sources make for unexpected and hitherto unimaginable applications.

Take, for example, the Astrometry.net project, which watches the Astrometry group on
Flickr for new photos of the night sky. It analyzes each image and identifies which part
of the sky it is from, as well as any interesting celestial bodies, such as stars or galaxies.
This project shows the kinds of things that are possible when data (in this case, tagged
photographic images) is made available and used for something (image analysis) that
was not anticipated by the creator.
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It has been said that “more data usually beats better algorithms,” which is to say that for
some problems (such as recommending movies or music based on past preferences),
however fiendish your algorithms, often they can be beaten simply by having more data
(and a less sophisticated algorithm).?

The good news is that big data is here. The bad news is that we are struggling to store
and analyze it.

Data Storage and Analysis

The problem is simple: although the storage capacities of hard drives have increased
massively over the years, access speeds—the rate at which data can be read from drives—
have not kept up. One typical drive from 1990 could store 1,370 MB of data and had a
transfer speed of 4.4 MB/s,* so you could read all the data from a full drive in around
five minutes. Over 20 years later, 1-terabyte drives are the norm, but the transfer speed
is around 100 MB/s, so it takes more than two and a half hours to read all the data off
the disk.

This is a long time to read all data on a single drive—and writing is even slower. The
obvious way to reduce the time is to read from multiple disks at once. Imagine if we had
100 drives, each holding one hundredth of the data. Working in parallel, we could read
the data in under two minutes.

Using only one hundredth of a disk may seem wasteful. But we can store 100 datasets,
each of which is 1 terabyte, and provide shared access to them. We can imagine that the
users of such a system would be happy to share access in return for shorter analysis
times, and statistically, that their analysis jobs would be likely to be spread over time,
so they wouldn't interfere with each other too much.

There’s more to being able to read and write data in parallel to or from multiple disks,
though.

The first problem to solve is hardware failure: as soon as you start using many pieces of
hardware, the chance that one will fail is fairly high. A common way of avoiding data
loss is through replication: redundant copies of the data are kept by the system so that
in the event of failure, there is another copy available. This is how RAID works, for
instance, although Hadoop’s filesystem, the Hadoop Distributed Filesystem (HDEFES),
takes a slightly different approach, as you shall see later.

3. The quote is from Anand Rajaraman’s blog post “More data usually beats better algorithms,” in which he
writes about the Netflix Challenge. Alon Halevy, Peter Norvig, and Fernando Pereira make the same point
in “The Unreasonable Effectiveness of Data,” IEEE Intelligent Systems, March/April 2009.

4. These specifications are for the Seagate ST-41600n.
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The second problem is that most analysis tasks need to be able to combine the data in
some way, and data read from one disk may need to be combined with data from any
of the other 99 disks. Various distributed systems allow data to be combined from mul-
tiple sources, but doing this correctly is notoriously challenging. MapReduce provides
a programming model that abstracts the problem from disk reads and writes, trans-
forming it into a computation over sets of keys and values. We look at the details of this
model in later chapters, but the important point for the present discussion is that there
are two parts to the computation—the map and the reduce—and it’s the interface be-
tween the two where the “mixing” occurs. Like HDFS, MapReduce has built-in
reliability.

In a nutshell, this is what Hadoop provides: a reliable, scalable platform for storage and

analysis. What's more, because it runs on commodity hardware and is open source,
Hadoop is affordable.

Querying All Your Data

The approach taken by MapReduce may seem like a brute-force approach. The premise
is that the entire dataset—or at least a good portion of it—can be processed for each
query. But this is its power. MapReduce is a batch query processor, and the ability to
run an ad hoc query against your whole dataset and get the results in a reasonable time
is transformative. It changes the way you think about data and unlocks data that was
previously archived on tape or disk. It gives people the opportunity to innovate with
data. Questions that took too long to get answered before can now be answered, which
in turn leads to new questions and new insights.

For example, Mailtrust, Rackspace’s mail division, used Hadoop for processing email
logs. One ad hoc query they wrote was to find the geographic distribution of their users.
In their words:

This data was so useful that we've scheduled the MapReduce job to run monthly and we
will be using this data to help us decide which Rackspace data centers to place new mail
servers in as we grow.

By bringing several hundred gigabytes of data together and having the tools to analyze
it, the Rackspace engineers were able to gain an understanding of the data that they
otherwise would never have had, and furthermore, they were able to use what they had
learned to improve the service for their customers.

Beyond Batch

For all its strengths, MapReduce is fundamentally a batch processing system, and is not
suitable for interactive analysis. You can’t run a query and get results back in a few
seconds or less. Queries typically take minutes or more, so it’s best for offline use, where
there isn’t a human sitting in the processing loop waiting for results.
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However, since its original incarnation, Hadoop has evolved beyond batch processing.
Indeed, the term “Hadoop” is sometimes used to refer to a larger ecosystem of projects,
not just HDFS and MapReduce, that fall under the umbrella of infrastructure for dis-
tributed computing and large-scale data processing. Many of these are hosted by the
Apache Software Foundation, which provides support for a community of open source
software projects, including the original HTTP Server from which it gets its name.

The first component to provide online access was HBase, a key-value store that uses
HDES for its underlying storage. HBase provides both online read/write access of in-
dividual rows and batch operations for reading and writing data in bulk, making it a
good solution for building applications on.

The real enabler for new processing models in Hadoop was the introduction of YARN
(which stands for Yet Another Resource Negotiator) in Hadoop 2. YARN is a cluster
resource management system, which allows any distributed program (not just MapRe-
duce) to run on data in a Hadoop cluster.

In the last few years, there has been a flowering of different processing patterns that
work with Hadoop. Here is a sample:

Interactive SQL
By dispensing with MapReduce and using a distributed query engine that uses
dedicated “always on” daemons (like Impala) or container reuse (like Hive on Tez),
it’s possible to achieve low-latency responses for SQL queries on Hadoop while still
scaling up to large dataset sizes.

Iterative processing
Many algorithms—such as those in machine learning—are iterative in nature, so
it's much more efficient to hold each intermediate working set in memory, com-
pared to loading from disk on each iteration. The architecture of MapReduce does
not allow this, but it’s straightforward with Spark, for example, and it enables a
highly exploratory style of working with datasets.

Stream processing
Streaming systems like Storm, Spark Streaming, or Samza make it possible to run
real-time, distributed computations on unbounded streams of data and emit results
to Hadoop storage or external systems.

Search
The Solr search platform can run on a Hadoop cluster, indexing documents as they
are added to HDFS, and serving search queries from indexes stored in HDES.

Despite the emergence of different processing frameworks on Hadoop, MapReduce still
has a place for batch processing, and it is useful to understand how it works since it
introduces several concepts that apply more generally (like the idea of input formats,
or how a dataset is split into pieces).
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Comparison with Other Systems

Hadoop isn't the first distributed system for data storage and analysis, but it has some
unique properties that set it apart from other systems that may seem similar. Here we
look at some of them.

Relational Database Management Systems

Why can’t we use databases with lots of disks to do large-scale analysis? Why is Hadoop
needed?

The answer to these questions comes from another trend in disk drives: seek time is
improving more slowly than transfer rate. Seeking is the process of moving the disk’s
head to a particular place on the disk to read or write data. It characterizes the latency
of a disk operation, whereas the transfer rate corresponds to a disk’s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large
portions of the dataset than streaming through it, which operates at the transfer rate.
On the other hand, for updating a small proportion of records in a database, a traditional
B-Tree (the data structure used in relational databases, which is limited by the rate at
which it can perform seeks) works well. For updating the majority of a database, a B-
Tree is less efficient than MapReduce, which uses Sort/Merge to rebuild the database.

In many ways, MapReduce can be seen as a complement to a Relational Database Man-
agement System (RDBMS). (The differences between the two systems are shown in
Table 1-1.) MapReduce is a good fit for problems that need to analyze the whole dataset
in a batch fashion, particularly for ad hoc analysis. An RDBMS is good for point queries
or updates, where the dataset has been indexed to deliver low-latency retrieval and
update times of a relatively small amount of data. MapReduce suits applications where
the data is written once and read many times, whereas a relational database is good for
datasets that are continually updated.’

Table 1-1. RDBMS compared to MapReduce

Traditional RDBMS MapReduce

Data size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times Write once, read many times
Transactions ACID None

5. InJanuary 2007, David J. DeWitt and Michael Stonebraker caused a stir by publishing “MapReduce: A major
step backwards,” in which they criticized MapReduce for being a poor substitute for relational databases.
Many commentators argued that it was a false comparison (see, for example, Mark C. Chu-Carroll’s “Data-
bases are hammers; MapReduce is a screwdriver”), and DeWitt and Stonebraker followed up with “MapRe-

duce II,” where they addressed the main topics brought up by others.
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Traditional RDBMS MapReduce

Structure Schema-on-write Schema-on-read
Integrity High Low
Scaling Nonlinear Linear

However, the differences between relational databases and Hadoop systems are blurring.
Relational databases have started incorporating some of the ideas from Hadoop, and
from the other direction, Hadoop systems such as Hive are becoming more interactive
(by moving away from MapReduce) and adding features like indexes and transactions
that make them look more and more like traditional RDBMSs.

Another difference between Hadoop and an RDBMS is the amount of structure in the
datasets on which they operate. Structured data is organized into entities that have a
defined format, such as XML documents or database tables that conform to a particular
predefined schema. This is the realm of the RDBMS. Semi-structured data, on the other
hand, is looser, and though there may be a schema, it is often ignored, so it may be used
only as a guide to the structure of the data: for example, a spreadsheet, in which the
structure is the grid of cells, although the cells themselves may hold any form of data.
Unstructured data does not have any particular internal structure: for example, plain
text or image data. Hadoop works well on unstructured or semi-structured data because
it is designed to interpret the data at processing time (so called schema-on-read). This
provides flexibility and avoids the costly data loading phase of an RDBMS, since in
Hadoop it is just a file copy.

Relational data is often normalized to retain its integrity and remove redundancy.
Normalization poses problems for Hadoop processing because it makes reading a record
a nonlocal operation, and one of the central assumptions that Hadoop makes is that it
is possible to perform (high-speed) streaming reads and writes.

A web serverlogis a good example of a set of records that is not normalized (for example,
the client hostnames are specified in full each time, even though the same client may
appear many times), and this is one reason that logfiles of all kinds are particularly well
suited to analysis with Hadoop. Note that Hadoop can perform joins; it’s just that they
are not used as much as in the relational world.

MapReduce—and the other processing models in Hadoop—scales linearly with the size
of the data. Data is partitioned, and the functional primitives (like map and reduce) can
work in parallel on separate partitions. This means that if you double the size of the
input data, a job will run twice as slowly. But if you also double the size of the cluster, a
job will run as fast as the original one. This is not generally true of SQL queries.
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Grid Computing

The high-performance computing (HPC) and grid computing communities have been
doing large-scale data processing for years, using such application program interfaces
(APIs) as the Message Passing Interface (MPI). Broadly, the approach in HPC is to
distribute the work across a cluster of machines, which access a shared filesystem, hosted
by a storage area network (SAN). This works well for predominantly compute-intensive
jobs, butitbecomesa problem when nodes need to access larger data volumes (hundreds
of gigabytes, the point at which Hadoop really starts to shine), since the network band-
width is the bottleneck and compute nodes become idle.

Hadoop tries to co-locate the data with the compute nodes, so data access is fast because
it is local.® This feature, known as data locality, is at the heart of data processing in
Hadoop and is the reason for its good performance. Recognizing that network band-
width is the most precious resource in a data center environment (it is easy to saturate
network links by copying data around), Hadoop goes to great lengths to conserve it by
explicitly modeling network topology. Notice that this arrangement does not preclude
high-CPU analyses in Hadoop.

MPI gives great control to programmers, but it requires that they explicitly handle the
mechanics of the data flow, exposed via low-level C routines and constructs such as
sockets, as well as the higher-level algorithms for the analyses. Processing in Hadoop
operates only at the higher level: the programmer thinks in terms of the data model
(such as key-value pairs for MapReduce), while the data flow remains implicit.

Coordinating the processes in a large-scale distributed computation is a challenge. The
hardest aspect is gracefully handling partial failure—when you don’t know whether or
notaremote process has failed—and still making progress with the overall computation.
Distributed processing frameworks like MapReduce spare the programmer from having
to think about failure, since the implementation detects failed tasks and reschedules
replacements on machines that are healthy. MapReduce is able to do this because it is a
shared-nothingarchitecture, meaning that tasks have no dependence on one other. (This
is a slight oversimplification, since the output from mappers is fed to the reducers, but
this is under the control of the MapReduce system; in this case, it needs to take more
care rerunning a failed reducer than rerunning a failed map, because it has to make sure
it can retrieve the necessary map outputs and, if not, regenerate them by running the
relevant maps again.) So from the programmer’s point of view, the order in which the
tasks run doesn’t matter. By contrast, MPI programs have to explicitly manage their own
checkpointing and recovery, which gives more control to the programmer but makes
them more difficult to write.

6. Jim Gray was an early advocate of putting the computation near the data. See “Distributed Computing Eco-
nomics,” March 2003.
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Volunteer Computing

When people first hear about Hadoop and MapReduce they often ask, “How is it dif-
ferent from SETI@home?” SETI, the Search for Extra-Terrestrial Intelligence, runs a
project called SETI@home in which volunteers donate CPU time from their otherwise
idle computers to analyze radio telescope data for signs of intelligent life outside Earth.
SETI@home is the most well known of many volunteer computing projects; others in-
clude the Great Internet Mersenne Prime Search (to search for large prime numbers)

and Folding@home (to understand protein folding and how it relates to disease).

Volunteer computing projects work by breaking the problems they are trying to
solve into chunks called work units, which are sent to computers around the world to
be analyzed. For example, a SETI@home work unit is about 0.35 MB of radio telescope
data, and takes hours or days to analyze on a typical home computer. When the analysis
is completed, the results are sent back to the server, and the client gets another work
unit. As a precaution to combat cheating, each work unit is sent to three different ma-
chines and needs at least two results to agree to be accepted.

Although SETI@home may be superficially similar to MapReduce (breaking a problem
into independent pieces to be worked on in parallel), there are some significant differ-
ences. The SETI@home problem is very CPU-intensive, which makes it suitable for
running on hundreds of thousands of computers across the world” because the time to
transfer the work unit is dwarfed by the time to run the computation on it. Volunteers
are donating CPU cycles, not bandwidth.

7. In January 2008, SETI@home was reported to be processing 300 gigabytes a day, using 320,000 computers
(most of which are not dedicated to SETI@home; they are used for other things, too).
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MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated
hardware running in a single data center with very high aggregate bandwidth
interconnects. By contrast, SETI@home runs a perpetual computation on untrusted
machines on the Internet with highly variable connection speeds and no data locality.

A Brief History of Apache Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used
text search library. Hadoop has its origins in Apache Nutch, an open source web search
engine, itself a part of the Lucene project.

The Origin of the Name “Hadoop”

The name Hadoop is not an acronym,; it’s a made-up name. The project’s creator, Doug
Cutting, explains how the name came about:

The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and
pronounce, meaningless, and not used elsewhere: those are my naming criteria. Kids
are good at generating such. Googol is a kid’s term.

Projects in the Hadoop ecosystem also tend to have names that are unrelated to their
function, often with an elephant or other animal theme (“Pig,” for example). Smaller
components are given more descriptive (and therefore more mundane) names. This is
a good principle, as it means you can generally work out what something does from its
name. For example, the namenode® manages the filesystem namespace.

Building a web search engine from scratch was an ambitious goal, for not only is the
software required to crawl and index websites complex to write, but it is also a challenge
to run without a dedicated operations team, since there are so many moving parts. It’s
expensive, too: Mike Cafarella and Doug Cutting estimated a system supporting a
one-billion-page index would cost around $500,000 in hardware, with a monthly run-
ning cost of $30,000.° Nevertheless, they believed it was a worthy goal, as it would open
up and ultimately democratize search engine algorithms.

Nutch was started in 2002, and a working crawler and search system quickly emerged.
However, its creators realized that their architecture wouldn’t scale to the billions of
pages on the Web. Help was at hand with the publication of a paper in 2003 that described
the architecture of Google’s distributed filesystem, called GFS, which was being used in

8. Inthis book, we use the lowercase form, “namenode,” to denote the entity when it's being referred to generally,
and the CamelCase form NameNode to denote the Java class that implements it.

9. See Mike Cafarella and Doug Cutting, “Building Nutch: Open Source Search,” ACM Queue, April 2004.
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production at Google.” GFS, or something like it, would solve their storage needs for
the very large files generated as a part of the web crawl and indexing process. In par-
ticular, GFS would free up time being spent on administrative tasks such as managing
storage nodes. In 2004, Nutch’s developers set about writing an open source implemen-
tation, the Nutch Distributed Filesystem (NDEFS).

In 2004, Google published the paper that introduced MapReduce to the world." Early
in 2005, the Nutch developers had a working MapReduce implementation in Nutch,
and by the middle of that year all the major Nutch algorithms had been ported to run
using MapReduce and NDEFS.

NDES and the MapReduce implementation in Nutch were applicable beyond the realm
of search, and in February 2006 they moved out of Nutch to form an independent
subproject of Lucene called Hadoop. At around the same time, Doug Cutting joined
Yahoo!, which provided a dedicated team and the resources to turn Hadoop into a
system that ran at web scale (see the following sidebar). This was demonstrated in Feb-
ruary 2008 when Yahoo! announced that its production search index was being gener-
ated by a 10,000-core Hadoop cluster."

Hadoop at Yahoo!

Building Internet-scale search engines requires huge amounts of data and therefore large
numbers of machines to process it. Yahoo! Search consists of four primary components:
the Crawler, which downloads pages from web servers; the WebMap, which builds a
graph of the known Web; the Indexer, which builds a reverse index to the best pages;
and the Runtime, which answers users’ queries. The WebMap is a graph that consists of
roughly 1 trillion (10'2) edges, each representing a web link, and 100 billion (10'") nodes,
each representing distinct URLs. Creating and analyzing such a large graph requires a
large number of computers running for many days. In early 2005, the infrastructure for
the WebMap, named Dreadnaught, needed to be redesigned to scale up to more nodes.
Dreadnaught had successfully scaled from 20 to 600 nodes, but required a complete
redesign to scale out further. Dreadnaught is similar to MapReduce in many ways, but
provides more flexibility and less structure. In particular, each fragment in a Dread-
naught job could send output to each of the fragments in the next stage of the job, but
the sort was all done in library code. In practice, most of the WebMap phases were pairs
that corresponded to MapReduce. Therefore, the WebMap applications would not re-
quire extensive refactoring to fit into MapReduce.

10. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” October 2003.

11. Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” December
2004.

12. “Yahoo! Launches World’s Largest Hadoop Production Application,” February 19, 2008.
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Eric Baldeschwieler (aka Eric14) created a small team, and we started designing and
prototyping a new framework, written in C++ modeled and after GFS and MapReduce,
to replace Dreadnaught. Although the immediate need was for a new framework for
WebMap, it was clear that standardization of the batch platform across Yahoo! Search
was critical and that by making the framework general enough to support other users,
we could better leverage investment in the new platform.

At the same time, we were watching Hadoop, which was part of Nutch, and its progress.
In January 2006, Yahoo! hired Doug Cutting, and a month later we decided to abandon
our prototype and adopt Hadoop. The advantage of Hadoop over our prototype and
design was that it was already working with a real application (Nutch) on 20 nodes. That
allowed us to bring up a research cluster two months later and start helping real cus-
tomers use the new framework much sooner than we could have otherwise. Another
advantage, of course, was that since Hadoop was already open source, it was easier
(although far from easy!) to get permission from Yahoo!’s legal department to work in
open source. So, we set up a 200-node cluster for the researchers in early 2006 and put
the WebMap conversion plans on hold while we supported and improved Hadoop for
the research users.

—Owen O’Malley, 2009

In January 2008, Hadoop was made its own top-level project at Apache, confirming its
success and its diverse, active community. By this time, Hadoop was being used by many
other companies besides Yahoo!, such as Last.fm, Facebook, and the New York Times.

In one well-publicized feat, the New York Times used Amazon’s EC2 compute cloud to
crunch through 4 terabytes of scanned archives from the paper, converting them to
PDFs for the Web."* The processing took less than 24 hours to run using 100 machines,
and the project probably wouldn't have been embarked upon without the combination
of Amazon’s pay-by-the-hour model (which allowed the NYT to access a large number
of machines for a short period) and Hadoop’s easy-to-use parallel programming model.

In April 2008, Hadoop broke a world record to become the fastest system to sort an
entire terabyte of data. Running on a 910-node cluster, Hadoop sorted 1 terabyte in 209
seconds (just under 3.5 minutes), beating the previous year’s winner of 297 seconds.**
In November of the same year, Google reported that its MapReduce implementation
sorted 1 terabyte in 68 seconds.” Then, in April 2009, it was announced that a team at
Yahoo! had used Hadoop to sort 1 terabyte in 62 seconds.'

13. Derek Gottfrid, “Self-Service, Prorated Super Computing Fun!” November 1, 2007.

14. Owen O’Malley, “TeraByte Sort on Apache Hadoop,” May 2008.

15. Grzegorz Czajkowski, “Sorting 1PB with MapReduce,” November 21, 2008.

16. Owen O’Malley and Arun C. Murthy, “Winning a 60 Second Dash with a Yellow Elephant,” April 2009.
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The trend since then has been to sort even larger volumes of data at ever faster rates. In
the 2014 competition, a team from Databricks were joint winners of the Gray Sort
benchmark. They used a 207-node Spark cluster to sort 100 terabytes of data in 1,406
seconds, a rate of 4.27 terabytes per minute."”

Today, Hadoop is widely used in mainstream enterprises. Hadoop’s role as a general-
purpose storage and analysis platform for big data has been recognized by the industry,
and this fact is reflected in the number of products that use or incorporate Hadoop in
some way. Commercial Hadoop support is available from large, established enterprise
vendors, including EMC, IBM, Microsoft, and Oracle, as well as from specialist Hadoop
companies such as Cloudera, Hortonworks, and MapR.

What’s in This Book?

The book is divided into five main parts: Parts I to III are about core Hadoop, Part IV
covers related projects in the Hadoop ecosystem, and Part V contains Hadoop case
studies. You can read the book from cover to cover, but there are alternative pathways
through the book that allow you to skip chapters that aren’t needed to read later ones.
See Figure 1-1.

Part I is made up of five chapters that cover the fundamental components in Hadoop
and should be read before tackling later chapters. Chapter 1 (this chapter) is a high-level
introduction to Hadoop. Chapter 2 provides an introduction to MapReduce. Chap-
ter 3 looks at Hadoop filesystems, and in particular HDFS, in depth. Chapter 4 discusses
YARN, Hadoop’s cluster resource management system. Chapter 5 covers the I/O build-
ing blocks in Hadoop: data integrity, compression, serialization, and file-based data
structures.

Part II has four chapters that cover MapReduce in depth. They provide useful under-
standing for later chapters (such as the data processing chapters in Part IV), but could
be skipped on a first reading. Chapter 6 goes through the practical steps needed to
develop a MapReduce application. Chapter 7 looks at how MapReduce is implemented
in Hadoop, from the point of view of a user. Chapter 8 is about the MapReduce pro-
gramming model and the various data formats that MapReduce can work with. Chap-
ter 9 is on advanced MapReduce topics, including sorting and joining data.

Part IIT concerns the administration of Hadoop: Chapters 10 and 11 describe how to
set up and maintain a Hadoop cluster running HDFS and MapReduce on YARN.

Part IV of the book is dedicated to projects that build on Hadoop or are closely related
to it. Each chapter covers one project and is largely independent of the other chapters
in this part, so they can be read in any order.

17. Reynold Xin et al., “GraySort on Apache Spark by Databricks,” November 2014.
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The first two chapters in this part are about data formats. Chapter 12 looks at Avro, a
cross-language data serialization library for Hadoop, and Chapter 13 covers Parquet,
an efficient columnar storage format for nested data.

The next two chapters look at data ingestion, or how to get your data into Hadoop.
Chapter 14 is about Flume, for high-volume ingestion of streaming data. Chapter 15 is
about Sqoop, for efficient bulk transfer of data between structured data stores (like
relational databases) and HDEFS.

The common theme of the next four chapters is data processing, and in particular using
higher-level abstractions than MapReduce. Pig (Chapter 16) is a data flow language for
exploring very large datasets. Hive (Chapter 17) is a data warehouse for managing data
stored in HDFS and provides a query language based on SQL. Crunch (Chapter 18) is
a high-level Java API for writing data processing pipelines that can run on MapReduce
or Spark. Spark (Chapter 19) is a cluster computing framework for large-scale data
processing; it provides a directed acyclic graph (DAG) engine, and APIs in Scala, Java,
and Python.

Chapter 20 is an introduction to HBase, a distributed column-oriented real-time data-
base that uses HDFS for its underlying storage. And Chapter 21 is about ZooKeeper, a
distributed, highly available coordination service that provides useful primitives for
building distributed applications.

Finally, Part V is a collection of case studies contributed by people using Hadoop in
interesting ways.

Supplementary information about Hadoop, such as how to install it on your machine,
can be found in the appendixes.
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Figure 1-1. Structure of the book: there are various pathways through the content
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CHAPTER 2
MapReduce

MapReduce is a programming model for data processing. The model is simple, yet not
too simple to express useful programs in. Hadoop can run MapReduce programs written
in various languages; in this chapter, we look at the same program expressed in Java,
Ruby, and Python. Most importantly, MapReduce programs are inherently parallel, thus
putting very large-scale data analysis into the hands of anyone with enough machines
attheir disposal. MapReduce comes into its own for large datasets, so let’s start by looking
at one.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors
collect data every hour at many locations across the globe and gather a large volume of
log data, which is a good candidate for analysis with MapReduce because we want to
process all the data, and the data is semi-structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center, or NCDC. The data is
stored using a line-oriented ASCII format, in which each line is a record. The format
supports a rich set of meteorological elements, many of which are optional or with
variable datalengths. For simplicity, we focus on the basic elements, such as temperature,
which are always present and are of fixed width.

Example 2-1 shows a sample line with some of the salient fields annotated. The line has
been split into multiple lines to show each field; in the real file, fields are packed into
one line with no delimiters.
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Example 2-1. Format of a National Climatic Data Center record

0057
332130
99999

19500101

0300
4
+51317

H H

+028783 #

FM-12
+0171
99999
V020
320

1

N
0072

00450
1

C

N
010000
1

N

9
-0128

-0139

10268

H*

H H R ®

USAF weather station identifier
WBAN weather station identifier
observation date
observation time

latitude (degrees x 1000)
longitude (degrees x 1000)

elevation (meters)

wind direction (degrees)
quality code

sky ceiling height (meters)
quality code

visibility distance (meters)
quality code

alr temperature (degrees Celsius x 10)
quality code

dew point temperature (degrees Celsius x 10)
quality code

atmospheric pressure (hectopascals x 10)
quality code

Datafiles are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

% s raw/1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz

There are tens of thousands of weather stations, so the whole dataset is made up of a
large number of relatively small files. It’s generally easier and more efficient to process
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a smaller number of relatively large files, so the data was preprocessed so that each year’s
readings were concatenated into a single file. (The means by which this was carried out
is described in Appendix C.)

Analyzing the Data with Unix Tools

What'’s the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline and a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script
to calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from
NCDC weather records

#!/usr/bin/env bash
for year in all/*
do
echo -ne ‘basename $year .gz'"\t"
gunzip -c $Syear | \
awk '{ temp = substr($0, 88, 5) + 0;
q = substr($0, 93, 1);
if (temp !=9999 8&& q ~ /[01459]/ && temp > max) max = temp }
END { print max }'
done

The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer
by adding 0. Next, a test is applied to see whether the temperature is valid (the value
9999 signifies a missing value in the NCDC dataset) and whether the quality code in-
dicates that the reading is not suspect or erroneous. If the reading is OK, the value is
compared with the maximum value seen so far, which is updated if a new maximum is
found. The END block is executed after all the lines in the file have been processed, and
it prints the maximum value.

Here is the beginning of a run:

% ./max_temperature.sh
1901 317
1902 244
1903 289
1904 256
1905 283

The temperature values in the source file are scaled by a factor of 10, so this works out
as a maximum temperature of 31.7°C for 1901 (there were very few readings at the
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beginning of the century, so this is plausible). The complete run for the century took 42
minutes in one run on a single EC2 High-CPU Extra Large instance.

To speed up the processing, we need to run parts of the program in parallel. In theory,
this is straightforward: we could process different years in different processes, using all
the available hardware threads on a machine. There are a few problems with this,
however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case,
the file size for different years varies widely, so some processes will finish much earlier
than others. Even if they pick up further work, the whole run is dominated by the longest
file. A better approach, although one that requires more work, is to split the input into
fixed-size chunks and assign each chunk to a process.

Second, combining the results from independent processes may require further pro-
cessing. In this case, the result for each year is independent of other years, and they may
be combined by concatenating all the results and sorting by year. If using the fixed-size
chunk approach, the combination is more delicate. For this example, data for a particular
year will typically be split into several chunks, each processed independently. We'll end
up with the maximum temperature for each chunk, so the final step is to look for the
highest of these maximums for each year.

Third, you are still limited by the processing capacity of a single machine. If the best
time you can achieve is 20 minutes with the number of processors you have, then that’s
it. You can’t make it go faster. Also, some datasets grow beyond the capacity of a single
machine. When we start using multiple machines, a whole host of other factors come
into play, mainly falling into the categories of coordination and reliability. Who runs
the overall job? How do we deal with failed processes?

So, although it’s feasible to parallelize the processing, in practice it's messy. Using a
framework like Hadoop to take care of these issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express
our query as a MapReduce job. After some local, small-scale testing, we will be able to
run it on a cluster of machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the
reduce phase. Each phase has key-value pairs as input and output, the types of which
may be chosen by the programmer. The programmer also specifies two functions: the
map function and the reduce function.
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The input to our map phase is the raw NCDC data. We choose a text input format that
gives us each line in the dataset as a text value. The key is the offset of the beginning of
the line from the beginning of the file, but as we have no need for this, we ignore it.

Our map function is simple. We pull out the year and the air temperature, because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reduce function can do its
work on it: finding the maximum temperature for each year. The map function is also
a good place to drop bad records: here we filter out temperatures that are missing,
suspect, or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004. . . 9999999N9+00001+99999999999. . .
0043011990999991950051512004. . . 9999999N9+00221+99999999999. . .
0043011990999991950051518004. . .9999999N9-00111+99999999999. ..
0043012650999991949032412004. . .0500001N9+01111+99999999999. ..
0043012650999991949032418004. . .0500001N9+00781+99999999999. ..

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004. . .9999999N9+00001+99999999999. . .)
(106, 0043011990999991950051512004. ..9999999N9+00221+99999999999. ..
(212, 0043011990999991950051518004. ..9999999N9-00111+99999999999. ..
(318, 0043012650999991949032412004. ..0500001N9+01111+99999999999. ..
(424, 0043012650999991949032418004. ..0500001N9+00781+99999999999...)

(NN

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, -11])

Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)
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This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later in
this chapter when we look at Hadoop Streaming.

input | map | shuffle | reduce > output
0067011990... (0, 0067011990..) (1950, 0)
0043011990... (106, 0043011990..) (1950, 22)
00i3011990_ £ (212, o0as0nissa ) b-pf (1950, -1 fp{ (9492 L1 TN L | (Goas, a11) | fa94sta
0043012650... (318, 0043012650..) (1949, 111) Lt s ’ >
0043012650... (424, 0043012650..) (1949, 78)

cat * | map.rb | sort | reduce.rb > output

Figure 2-1. MapReduce logical data flow

Java MapReduce

Having run through how the MapReduce program works, the next step is to express it
in code. We need three things: a map function, a reduce function, and some code to run
the job. The map function is represented by the Mapper class, which declares an abstract
map() method. Example 2-3 shows the implementation of our map function.

Example 2-3. Mapper for the maximum temperature example
import java.ilo.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();

String year = line.substring(15, 19);
int airTemperature;

if (line.charAt(87) == '+') { // parselInt doesn't like leading plus signs
alrTemperature = Integer.parselnt(line.substring(88, 92));
} else {

alrTemperature = Integer.parselnt(line.substring(87, 92));

}
String quality = line.substring(92, 93);
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if (alrTemperature != MISSING && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));

}
3
}

The Mapper class is a generic type, with four formal type parameters that specify the
input key, input value, output key, and output value types of the map function. For the
present example, the input key is a long integer offset, the input value is a line of text,
the output key is a year, and the output value is an air temperature (an integer). Rather
than using built-in Java types, Hadoop provides its own set of basic types that are op-
timized for network serialization. These are found in the org. apache. hadoop. o pack-
age. Here we use LongWritable, which corresponds to a Java Long, Text (like Java
String), and IntWritable (like Java Integer).

The map() method is passed a key and a value. We convert the Text value containing
the line of input into a Java String, then use its substring() method to extract the
columns we are interested in.

The map() method also provides an instance of Context to write the output to. In this
case, we write the year as a Text object (since we are just using it as a key), and the
temperature is wrapped in an IntWritable. We write an output record only if the tem-
perature is present and the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));
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Again, four formal type parameters are used to specify the input and output types, this
time for the reduce function. The input types of the reduce function must match the
output types of the map function: Text and IntWritable. And in this case, the output
types of the reduce function are Text and IntWritable, for a year and its maximum
temperature, which we find by iterating through the temperatures and comparing each
with a record of the highest found so far.

The third piece of code runs the MapReduce job (see Example 2-5).

Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

A Job object forms the specification of the job and gives you control over how the job
is run. When we run this job on a Hadoop cluster, we will package the code into a JAR
file (which Hadoop will distribute around the cluster). Rather than explicitly specifying
the name of the JAR file, we can pass a class in the Job’s setJarByClass() method,
which Hadoop will use to locate the relevant JAR file by looking for the JAR file con-
taining this class.
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Having constructed a Job object, we specify the input and output paths. An input path
is specified by calling the static addInputPath() method on FileInputFormat, and it
can be a single file, a directory (in which case, the input forms all the files in that direc-
tory), or a file pattern. As the name suggests, addInputPath() can be called more than
once to use input from multiple paths.

The output path (of which there is only one) is specified by the static setOutput
Path() method on FileOutputFormat. It specifies a directory where the output files
from the reduce function are written. The directory shouldn't exist before running the
job because Hadoop will complain and not run the job. This precaution is to prevent
dataloss (it can be very annoying to accidentally overwrite the output of a long job with
that of another).

Next, we specify the map and reduce types to use via the setMapperClass() and
setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control the output
types for the reduce function, and must match what the Reduce class produces. The map
output types default to the same types, so they do not need to be set if the mapper
produces the same types as the reducer (as it does in our case). However, if they are
different, the map output types must be set using the setMapOutputKeyClass() and
setMapOutputValueClass() methods.

The input types are controlled via the input format, which we have not explicitly set
because we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run
the job. The waitForCompletion() method on Job submits the job and waits for it to
finish. The single argument to the method is a flag indicating whether verbose output
is generated. When true, the job writes information about its progress to the console.

The return value of the waitForCompletion() method is a Boolean indicating success
(true) or failure (false), which we translate into the programs’s exit code of 0 or 1.

The Java MapReduce API used in this section, and throughout the
book, is called the “new API”; it replaces the older, functionally
equivalent APIL The differences between the two APIs are explained
in Appendix D, along with tips on how to convert between the two
APIs. You can also find the old API equivalent of the maximum tem-
perature application there.

Atestrun

After writing a MapReduce job, it’s normal to try it out on a small dataset to flush out
any immediate problems with the code. First, install Hadoop in standalone mode (there
are instructions for how to do this in Appendix A). This is the mode in which Hadoop
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runs using the local filesystem with a local job runner. Then, install and compile the
examples using the instructions on the book’s website.

Let’s test it on the five-line sample discussed earlier (the output has been slightly refor-
matted to fit the page, and some lines have been removed):

% export HADOOP_CLASSPATH=hadoop-examples.jar
% hadoop MaxTemperature input/ncdc/sample.txt output

14/09/16 09:48:39 WARN

library for your platform...

14/09/16 09:48:40 WARN
parsing not performed.

util.NativeCodelLoader: Unable to load native-hadoop

using builtin-java classes where applicable
mapreduce.JobSubmitter: Hadoop command-line option
Implement the Tool interface and execute your application

with ToolRunner to remedy this.

14/09/16 09:48:40 INFO
14/09/16 ©9:48:40 INFO
14/09/16 09:48:40 INFO
job_local26392882_0001
14/09/16 09:48:40 INFO
http://localhost:8080/
14/09/16 09:48:40 INFO
14/09/16 ©9:48:40 INFO
14/09/16 09:48:40 INFO
org.apache.hadoop.
14/09/16 09:48:40
14/09/16 09:48:40

INFO
INFO

input.FileInputFormat: Total input paths to process : 1
mapreduce.JobSubmitter: number of splits:1
mapreduce.JobSubmitter: Submitting tokens for job:

mapreduce.Job: The url to track the job:
mapreduce.Job: Running job: job_local26392882_0001

mapred.LocalJobRunner: OutputCommitter set in config null
mapred.LocalJobRunner: OutputCommitter is

mapreduce.lib.output.FileOutputCommitter

mapred.LocalJobRunner: Waiting for map tasks
mapred.LocalJobRunner: Starting task:

attempt_local26392882_0001_m_000000_0

14/09/16 ©9:48:40 INFO
14/09/16 09:48:40 INFO
14/09/16 ©9:48:40 INFO
is done. And is in the
14/09/16 ©9:48:40 INFO
14/09/16 09:48:40 INFO
done.

14/09/16 09:48:40 INFO

mapred.Task: Using ResourceCalculatorProcessTree : null
mapred.LocalJobRunner:

mapred.Task: Task:attempt_local26392882_0001_m_000000_0
process of committing

mapred.LocalJobRunner: map

mapred.Task: Task 'attempt_local26392882_0001_m_000000_0"

mapred.LocalJobRunner: Finishing task:

attempt_local26392882_0001_m_000000_0

14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO
14/09/16 09:48:40 INFO

map task executor complete.
Waiting for reduce tasks
Starting task:

mapred.LocalJobRunner:
mapred.LocalJobRunner:
mapred.LocalJobRunner:

attempt_local26392882_0001_r_000000_0

14/09/16
14/09/16
14/09/16
14/09/16
segments
14/09/16
14/09/16
segments
14/09/16
14/09/16
is done.
14/09/16
14/09/16

09:48:40 INFO
09:48:40 INFO
09:48:40 INFO
09:48:40 INFO
left of total
09:48:40 INFO
09:48:40 INFO
left of total
09:48:40 INFO
09:48:40 INFO
And is in the
09:48:40 INFO
09:48:40 INFO

mapred.Task: Using ResourceCalculatorProcessTree : null
mapred.LocalJobRunner: 1 / 1 copied.

mapred.Merger: Merging 1 sorted segments

mapred.Merger: Down to the last merge-pass, with 1
size: 50 bytes

mapred.Merger: Merging 1 sorted segments

mapred.Merger: Down to the last merge-pass, with 1
size: 50 bytes

mapred.LocalJobRunner: 1 / 1 copied.

mapred.Task: Task:attempt_local26392882_0001_r_000000_0
process of committing

mapred.LocalJobRunner: 1 / 1 copied.

mapred.Task: Task attempt_local26392882_0001_r_000000_0

28

| Chapter 2: MapReduce



is allowed to commit now
14/09/16 09:48:40 INFO output.FileOutputCommitter: Saved output of task
'attempt...local26392882_0001_r_000000_0' to file:/Users/tom/book-workspace/
hadoop-book/output/_temporary/0/task_local26392882_0001_r_000000
14/09/16 09:48:40 INFO mapred.LocalJobRunner: reduce > reduce
14/09/16 09:48:40 INFO mapred.Task: Task 'attempt_local26392882_0001_r_000000_0'
done.
14/09/16 09:48:40 INFO mapred.LocalJobRunner: Finishing task:
attempt_local26392882_0001_r_000000_0
14/09/16 09:48:40 INFO mapred.LocalJobRunner: reduce task executor complete.
14/09/16 09:48:41 INFO mapreduce.Job: Job job_local26392882_0001 running in uber
mode : false
14/09/16 09:48:41 INFO mapreduce.Job: map 100% reduce 100%
14/09/16 09:48:41 INFO mapreduce.Job: Job job_local26392882_0001 completed
successfully
14/09/16 09:48:41 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=377168
FILE: Number of bytes written=828464
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=5
Map output records=5
Map output bytes=45
Map output materialized bytes=61
Input split bytes=129
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=61
Reduce input records=5
Reduce output records=2
Spilled Records=10
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=39
Total committed heap usage (bytes)=226754560
File Input Format Counters
Bytes Read=529
File Output Format Counters
Bytes Written=29

When the hadoop command is invoked with a classname as the first argument, it
launches a Java virtual machine (JVM) to run the class. The hadoop command adds the
Hadoop libraries (and their dependencies) to the classpath and picks up the Hadoop
configuration, too. To add the application classes to the classpath, we've defined an
environment variable called HADOOP_CLASSPATH, which the hadoop script picks up.
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When running in local (standalone) mode, the programs in this book
all assume that you have set the HADOOP_CLASSPATH in this way. The
commands should be run from the directory that the example code
is installed in.

The output from running the job provides some useful information. For example,
we can see that the job was given an ID of job_local26392882_0001, and it ran
one map task and one reduce task (with the following IDs: attempt_lo

cal26392882_0001_m_000000_ 0 and attempt local26392882_ 0001 _r_000000_0).
Knowing the job and task IDs can be very useful when debugging MapReduce jobs.

The last section of the output, titled “Counters,” shows the statistics that Hadoop gen-
erates for each job it runs. These are very useful for checking whether the amount of
data processed is what you expected. For example, we can follow the number of records
that went through the system: five map input records produced five map output records
(since the mapper emitted one output record for each valid input record), then five
reduce input records in two groups (one for each unique key) produced two reduce
output records.

The output was written to the output directory, which contains one output file per
reducer. The job had a single reducer, so we find a single file, named part-r-00000:

% cat output/part-r-00000
1949 111
1950 22

This result is the same as when we went through it by hand earlier. We interpret this as
saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it was
2.2°C.

Scaling Out

You've seen how MapReduce works for small inputs; now it’s time to take a bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity, the examples
so far have used files on the local filesystem. However, to scale out, we need to store the
data in a distributed filesystem (typically HDES, which you’ll learn about in the next
chapter). This allows Hadoop to move the MapReduce computation to each machine
hosting a part of the data, using Hadoop’s resource management system, called YARN
(see Chapter 4). Let’s see how this works.

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
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information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks. The tasks are scheduled using YARN and run on nodes in
the cluster. If a task fails, it will be automatically rescheduled to run on a different node.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits,
or just splits. Hadoop creates one map task for each split, which runs the user-defined
map function for each record in the split.

Having many splits means the time taken to process each split is small compared to the
time to process the whole input. So if we are processing the splits in parallel, the pro-
cessing is better load balanced when the splits are small, since a faster machine will be
able to process proportionally more splits over the course of the job than a slower
machine. Even if the machines are identical, failed processes or other jobs running
concurrently make load balancing desirable, and the quality of the load balancing in-
creases as the splits become more fine grained.

On the other hand, if splits are too small, the overhead of managing the splits and map
task creation begins to dominate the total job execution time. For most jobs, a good split
size tends to be the size of an HDFS block, which is 128 MB by default, although this
can be changed for the cluster (for all newly created files) or specified when each file is
created.

Hadoop does its best to run the map task on a node where the input data resides in
HDEFS, because it doesn’t use valuable cluster bandwidth. This is called the data locality
optimization. Sometimes, however, all the nodes hosting the HDFS block replicas for a
map tasK’s input split are running other map tasks, so the job scheduler will look for a
free map slot on a node in the same rack as one of the blocks. Very occasionally even
this is not possible, so an off-rack node is used, which results in an inter-rack network
transfer. The three possibilities are illustrated in Figure 2-2.

It should now be clear why the optimal split size is the same as the block size: it is the
largest size of input that can be guaranteed to be stored on a single node. If the split
spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so
some of the split would have to be transferred across the network to the node running
the map task, which is clearly less efficient than running the whole map task using local
data.

Map tasks write their output to the local disk, not to HDFS. Why is this? Map output is
intermediate output: it’s processed by reduce tasks to produce the final output, and once
the job is complete, the map output can be thrown away. So, storing it in HDFS with
replication would be overkill. If the node running the map task fails before the map
output has been consumed by the reduce task, then Hadoop will automatically rerun
the map task on another node to re-create the map output.
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[ HDFS block data center

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

Reduce tasks don’'t have the advantage of data locality; the input to a single reduce task
is normally the output from all mappers. In the present example, we have a single reduce
task that is fed by all of the map tasks. Therefore, the sorted map outputs have to be
transferred across the network to the node where the reduce task is running, where they
are merged and then passed to the user-defined reduce function. The output of the
reduce is normally stored in HDFS for reliability. As explained in Chapter 3, for each
HDES block of the reduce output, the first replica is stored on the local node, with other
replicas being stored on off-rack nodes for reliability. Thus, writing the reduce output
does consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted
boxes indicate nodes, the dotted arrows show data transfers on a node, and the solid
arrows show data transfers between nodes.
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Figure 2-3. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 214, you will see how
to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The shuffle
is more complicated than this diagram suggests, and tuning it can have a big impact on
job execution time, as you will see in “Shuffle and Sort” on page 197.
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Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLineIlnputFormat” on page 234). In this case, the only
off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the user
to specify a combiner function to be run on the map output, and the combiner function’s
output forms the input to the reduce function. Because the combiner function is an
optimization, Hadoop does not provide a guarantee of how many times it will call it for
a particular map output record, if at all. In other words, calling the combiner function
zero, one, or many times should produce the same output from the reducer.
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Figure 2-5. MapReduce data flow with no reduce tasks

The contract for the combiner function constrains the type of function that may be used.
This is best illustrated with an example. Suppose that for the maximum temperature
example, readings for the year 1950 were processed by two maps (because they were in
different splits). Imagine the first map produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

and the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])

with output:
(1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just
like the reduce function, finds the maximum temperature for each map output. The
reduce function would then be called with:

(1950, [20, 25])

and would produce the same output as before. More succinctly, we may express the
function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25
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Not all functions possess this property.! For example, if we were calculating mean tem-
peratures, we couldn’'t use the mean as our combiner function, because:

mean(0, 20, 10, 25, 15) = 14
but:
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. (How could it? The reduce
function is still needed to process records with the same key from different maps.) But
it can help cut down the amount of data shuffled between the mappers and the reducers,
and for this reason alone it is always worth considering whether you can use a combiner
function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using
the Reducer class, and for this application, it is the same implementation as the reduce
function in MaxTemperatureReducer. The only change we need to make is to set the
combiner class on the Job (see Example 2-6).

Example 2-6. Application to find the maximum temperature, using a combiner func-
tion for efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
"<output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperatureWithCombiner.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);

1. Functions with this property are called commutative and associative. They are also sometimes referred to as

5«

distributive, such as by Jim Gray et al’s “Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals,” February1995.
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job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of
MapReduce: it scales to the size of your data and the size of your hardware. Here’s one
data point: on a 10-node EC2 cluster running High-CPU Extra Large instances, the
program took six minutes to run.’

We'll go through the mechanics of running programs on a cluster in Chapter 6.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams
as the interface between Hadoop and your program, so you can use any language that
can read standard input and write to standard output to write your MapReduce
program.’

Streaming is naturally suited for text processing. Map input data is passed over standard
input to your map function, which processes it line by line and writes lines to standard
output. A map output key-value pair is written as a single tab-delimited line. Input to
the reduce function is in the same format—a tab-separated key-value pair—passed over
standard input. The reduce function reads lines from standard input, which the frame-
work guarantees are sorted by key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding maximum tem-
peratures by year in Streaming.

Ruby

The map function can be expressed in Ruby as shown in Example 2-7.

2. This is a factor of seven faster than the serial run on one machine using awk. The main reason it wasn’t
proportionately faster is because the input data wasn’t evenly partitioned. For convenience, the input files
were gzipped by year, resulting in large files for later years in the dataset, when the number of weather records
was much higher.

3. Hadoop Pipes is an alternative to Streaming for C++ programmers. It uses sockets to communicate with the
process running the C++ map or reduce function.
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Example 2-7. Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

STDIN.each_line do |line|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end

The program iterates over lines from standard input by executing a block for each line
from STDIN (a global constant of type I0). The block pulls out the relevant fields from
each input line and, if the temperature is valid, writes the year and the temperature
separated by a tab character, \t, to standard output (using puts).

It's worth drawing out a design difference between Streaming and the
Java MapReduce API. The Java API is geared toward processing your
map function one record at a time. The framework calls the map()
method on your Mapper for each record in the input, whereas with
Streaming the map program can decide how to process the input—
for example, it could easily read and process multiple lines at a time
since it’s in control of the reading. The user’s Java map implementa-
tion is “pushed” records, but it’s still possible to consider multiple lines
at a time by accumulating previous lines in an instance variable in the
Mapper.* In this case, you need to implement the cleanup() method
so that you know when the last record has been read, so you can finish
processing the last group of lines.

Because the script just operates on standard input and output, it’s trivial to test the script
without using Hadoop, simply by using Unix pipes:

% cat input/ncdc/sample.txt | ch02-mr-intro/src/main/ruby/max_temperature_map.rb

1950 +0000
1950 +0022
1950 -0011
1949 +0111
1949 +0078

The reduce function shown in Example 2-8 is a little more complex.

Example 2-8. Reduce function for maximum temperature in Ruby

#!/usr/bin/env ruby

last_key, max_val = nil, -1000000
STDIN.each_line do |line|
key, val = line.split("\t")

4. Alternatively, you could use “pull”-style processing in the new MapReduce API; see Appendix D.
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if last_key && last_key != key
puts "#{last_key}\t#{max_val}"
last_key, max_val = key, val.to_1i
else
last_key, max_val = key, [max_val, val.to_i].max
end
end
puts "#{last_key}\t#{max_val}" if last_key

Again, the program iterates over lines from standard input, but this time we have to
store some state as we process each key group. In this case, the keys are the years, and
we store the last key seen and the maximum temperature seen so far for that key. The
MapReduce framework ensures that the keys are ordered, so we know that if a key is
different from the previous one, we have moved into a new key group. In contrast to
the Java API, where you are provided an iterator over each key group, in Streaming you
have to find key group boundaries in your program.

For each line, we pull out the key and value. Then, if we've just finished a group
(last_key && last_key != key), we write the key and the maximum temperature for
that group, separated by a tab character, before resetting the maximum temperature for
the newkey. If we haven't just finished a group, we just update the maximum temperature
for the current key.

The last line of the program ensures that a line is written for the last key group in the
input.

We can now simulate the whole MapReduce pipeline with a Unix pipeline (which is
equivalent to the Unix pipeline shown in Figure 2-1):

% cat input/ncdc/sample.txt | \
ch02-mr-intro/src/main/ruby/max_temperature_map.rb | \
sort | ch02-mr-intro/src/main/ruby/max_temperature_reduce.rb
1949 111
1950 22

The output is the same as that of the Java program, so the next step is to run it using
Hadoop itself.

The hadoop command doesn’t support a Streaming option; instead, you specify the
Streaming JAR file along with the jar option. Options to the Streaming program specify
the input and output paths and the map and reduce scripts. This is what it looks like:

% hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \
-input input/ncdc/sample.txt \
-output output \
-mapper ch02-mr-intro/src/main/ruby/max_temperature_map.rb \
-reducer ch0@2-mr-intro/src/main/ruby/max_temperature_reduce.rb

When running on a large dataset on a cluster, we should use the -combiner option to
set the combiner:
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% hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \
-files ch02-mr-intro/src/main/ruby/max_temperature_map.rb,\
ch02-mr-intro/src/main/ruby/max_temperature_reduce.rb \
-input input/ncdc/all \
-output output \
-mapper ch@2-mr-intro/src/main/ruby/max_temperature_map.rb \
-combiner ch02-mr-intro/src/main/ruby/max_temperature_reduce.rb \
-reducer ch02-mr-intro/src/main/ruby/max_temperature_reduce.rb

Note also the use of -files, which we use when running Streaming programs on the
cluster to ship the scripts to the cluster.

Python

Streaming supports any programming language that can read from standard input and
write to standard output, so for readers more familiar with Python, here’s the same
example again.”> The map script is in Example 2-9, and the reduce script is in
Example 2-10.

Example 2-9. Map function for maximum temperature in Python

#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
val = line.strip()
(year, temp, q) = (val[15:19], val[87:92], val[92:93])
if (temp != "+9999" and re.match("[01459]", q)):
print "%s\t%s" % (year, temp)

Example 2-10. Reduce function for maximum temperature in Python

#!/usr/bin/env python
import sys

(last_key, max_val) = (None, -sys.maxint)
for line in sys.stdin:
(key, val) = line.strip().split("\t")
if last_key and last_key != key:
print "%s\t%s" % (last_key, max_val)
(last_key, max_val) = (key, int(val))
else:
(last_key, max_val) = (key, max(max_val, int(val)))

5. As an alternative to Streaming, Python programmers should consider Dumbo, which makes the Streaming
MapReduce interface more Pythonic and easier to use.
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if last_key:
print "%s\t%s" % (last_key, max_val)

We can test the programs and run the job in the same way we did in Ruby. For example,
to run a test:

% cat input/ncdc/sample.txt | \
ch02-mr-intro/src/main/python/max_temperature_map.py | \
sort | ch02-mr-intro/src/main/python/max_temperature_reduce.py
1949 111
1950 22
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CHAPTER 3
The Hadoop Distributed Filesystem

When a dataset outgrows the storage capacity of a single physical machine, it becomes
necessary to partition it across a number of separate machines. Filesystems that manage
the storage across a network of machines are called distributed filesystems. Since they
are network based, all the complications of network programming kick in, thus making
distributed filesystems more complex than regular disk filesystems. For example, one
of the biggest challenges is making the filesystem tolerate node failure without suffering
data loss.

Hadoop comes with a distributed filesystem called HDFS, which stands for Hadoop
Distributed Filesystem. (You may sometimes see references to “DFS”—informally or in
older documentation or configurations—which is the same thing.) HDFS is Hadoop’s
flagship filesystem and is the focus of this chapter, but Hadoop actually has a general-
purpose filesystem abstraction, so we’ll see along the way how Hadoop integrates with
other storage systems (such as the local filesystem and Amazon S3).

The Design of HDFS

HDES is a filesystem designed for storing very large files with streaming data access
patterns, running on clusters of commodity hardware.! Let’s examine this statement in
more detail:

1. The architecture of HDFS is described in Robert Chansler et al’s, “The Hadoop Distributed File System,”
which appeared in The Architecture of Open Source Applications: Elegance, Evolution, and a Few Fearless
Hacks by Amy Brown and Greg Wilson (eds.).

83


http://www.aosabook.org/en/hdfs.html

Very large files
“Very large” in this context means files that are hundreds of megabytes, gigabytes,
or terabytes in size. There are Hadoop clusters running today that store petabytes
of data.?

Streaming data access
HDES is built around the idea that the most efficient data processing pattern is a
write-once, read-many-times pattern. A dataset is typically generated or copied
from source, and then various analyses are performed on that dataset over time.
Each analysis will involve a large proportion, if not all, of the dataset, so the time
to read the whole dataset is more important than the latency in reading the first
record.

Commodity hardware
Hadoop doesn't require expensive, highly reliable hardware. It's designed to run on
clusters of commodity hardware (commonly available hardware that can be ob-
tained from multiple vendors)® for which the chance of node failure across the
cluster is high, at least for large clusters. HDFS is designed to carry on working
without a noticeable interruption to the user in the face of such failure.

Itis also worth examining the applications for which using HDFS does not work so well.
Although this may change in the future, these are areas where HDES is not a good fit
today:

Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency. HBase (see
Chapter 20) is currently a better choice for low-latency access.

Lots of small files
Because the namenode holds filesystem metadata in memory, the limit to the num-
ber of files in a filesystem is governed by the amount of memory on the namenode.
As a rule of thumb, each file, directory, and block takes about 150 bytes. So, for
example, if you had one million files, each taking one block, you would need at least
300 MB of memory. Although storing millions of files is feasible, billions is beyond
the capability of current hardware.*

2. See Konstantin V. Shvachko and Arun C. Murthy, “Scaling Hadoop to 4000 nodes at Yahoo!”, September 30,
2008.

3. See Chapter 10 for a typical machine specification.

4. Foran exposition of the scalability limits of HDFS, see Konstantin V. Shvachko, “HDFS Scalability: The Limits
to Growth”, April 2010.
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Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the
end of the file, in append-only fashion. There is no support for multiple writers or
for modifications at arbitrary offsets in the file. (These might be supported in the
future, but they are likely to be relatively inefficient.)

HDFS Concepts
Blocks

A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystems for a single disk build on this by dealing with data in blocks, which are an
integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes
in size, whereas disk blocks are normally 512 bytes. This is generally transparent to the
filesystem user who is simply reading or writing a file of whatever length. However,
there are tools to perform filesystem maintenance, such as df and fsck, that operate on
the filesystem block level.

HDFEFS, too, has the concept of a block, but it is a much larger unit—128 MB by default.
Like in a filesystem for a single disk, files in HDFS are broken into block-sized chunks,
which are stored as independent units. Unlike a filesystem for a single disk, a file in
HDFS that is smaller than a single block does not occupy a full block’s worth of under-
lying storage. (For example, a 1 MB file stored with a block size of 128 MB uses 1 MB
of disk space, not 128 MB.) When unqualified, the term “block” in this book refers to a
block in HDEFS.

Why Is a Block in HDFS So Large?

HDEFS blocks are large compared to disk blocks, and the reason is to minimize the cost
of seeks. If the block is large enough, the time it takes to transfer the data from the disk
can be significantly longer than the time to seek to the start of the block. Thus, trans-
ferring a large file made of multiple blocks operates at the disk transfer rate.

A quick calculation shows that if the seek time is around 10 ms and the transfer rate is
100 MB/s, to make the seek time 1% of the transfer time, we need to make the block size
around 100 MB. The default is actually 128 MB, although many HDFS installations use
larger block sizes. This figure will continue to be revised upward as transfer speeds grow
with new generations of disk drives.

This argument shouldn’t be taken too far, however. Map tasks in MapReduce normally
operate on one block at a time, so if you have too few tasks (fewer than nodes in the
cluster), your jobs will run slower than they could otherwise.
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Having a block abstraction for a distributed filesystem brings several benefits. The first
benefit is the most obvious: a file can be larger than any single disk in the network.
There’s nothing that requires the blocks from a file to be stored on the same disk, so
they can take advantage of any of the disks in the cluster. In fact, it would be possible,
if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in
the cluster.

Second, making the unit of abstraction a block rather than a file simplifies the storage
subsystem. Simplicity is something to strive for in all systems, but it is especially
important for a distributed system in which the failure modes are so varied. The storage
subsystem deals with blocks, simplifying storage management (because blocks are a
fixed size, it is easy to calculate how many can be stored on a given disk) and eliminating
metadata concerns (because blocks are just chunks of data to be stored, file metadata
such as permissions information does not need to be stored with the blocks, so another
system can handle metadata separately).

Furthermore, blocks fit well with replication for providing fault tolerance and availa-
bility. To insure against corrupted blocks and disk and machine failure, each block is
replicated to a small number of physically separate machines (typically three). If a block
becomes unavailable, a copy can be read from another location in a way that is trans-
parent to the client. A block that is no longer available due to corruption or machine
failure can be replicated from its alternative locations to other live machines to bring
the replication factor back to the normal level. (See “Data Integrity” on page 97 for more
on guarding against corrupt data.) Similarly, some applications may choose to set a high
replication factor for the blocks in a popular file to spread the read load on the cluster.

Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For example,
running:

% hdfs fsck / -files -blocks

will list the blocks that make up each file in the filesystem. (See also “Filesystem check
(fsck)” on page 326.)

Namenodes and Datanodes

An HDEFS cluster has two types of nodes operating in a master—worker pattern: a
namenode (the master) and a number of datanodes (workers). The namenode manages
the filesystem namespace. It maintains the filesystem tree and the metadata for all the
files and directories in the tree. This information is stored persistently on the local disk
in the form of two files: the namespace image and the editlog. The namenode also knows
the datanodes on which all the blocks for a given file are located; however, it does
not store block locations persistently, because this information is reconstructed from
datanodes when the system starts.
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A client accesses the filesystem on behalf of the user by communicating with the name-
node and datanodes. The client presents a filesystem interface similar to a Portable
Operating System Interface (POSIX), so the user code does not need to know about the
namenode and datanodes to function.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when
they are told to (by clients or the namenode), and they report back to the namenode
periodically with lists of blocks that they are storing.

Without the namenode, the filesystem cannot be used. In fact, if the machine running
the namenode were obliterated, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and Hadoop provides two mechanisms for this.

The first way is to back up the files that make up the persistent state of the filesystem
metadata. Hadoop can be configured so that the namenode writes its persistent state to
multiple filesystems. These writes are synchronous and atomic. The usual configuration
choice is to write to local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as
a namenode. Its main role is to periodically merge the namespace image with the edit
log to prevent the edit log from becoming too large. The secondary namenode usually
runs on a separate physical machine because it requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged name-
space image, which can be used in the event of the namenode failing. However, the state
of the secondary namenode lags that of the primary, so in the event of total failure of
the primary, data loss is almost certain. The usual course of action in this case is to copy
the namenode’s metadata files that are on NFS to the secondary and run it as the new
primary. (Note that it is possible to run a hot standby namenode instead of a secondary,
as discussed in “HDFS High Availability” on page 48.)

See “The filesystem image and edit log” on page 318 for more details.

Block Caching

Normally a datanode reads blocks from disk, but for frequently accessed files the blocks
may be explicitly cached in the datanode’s memory, in an off-heap block cache. By
default, a block is cached in only one datanode’s memory, although the number is con-
figurable on a per-file basis. Job schedulers (for MapReduce, Spark, and other frame-
works) can take advantage of cached blocks by running tasks on the datanode where a
block is cached, for increased read performance. A small lookup table used in a join is
a good candidate for caching, for example.
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Users or applications instruct the namenode which files to cache (and for how long) by
adding a cache directive to a cache pool. Cache pools are an administrative grouping for
managing cache permissions and resource usage.

HDFS Federation

The namenode keeps a reference to every file and block in the filesystem in memory,
which means that on very large clusters with many files, memory becomes the limiting
factor for scaling (see “How Much Memory Does a Namenode Need?” on page 294).
HDES federation, introduced in the 2.x release series, allows a cluster to scale by adding
namenodes, each of which manages a portion of the filesystem namespace. For example,
one namenode might manage all the files rooted under /user, say, and a second name-
node might handle files under /share.

Under federation, each namenode manages a namespace volume, which is made up of
the metadata for the namespace, and a block pool containing all the blocks for the files
in the namespace. Namespace volumes are independent of each other, which means
namenodes do not communicate with one another, and furthermore the failure of one
namenode does not affect the availability of the namespaces managed by other namen-
odes. Block pool storage is not partitioned, however, so datanodes register with each
namenode in the cluster and store blocks from multiple block pools.

To access a federated HDFS cluster, clients use client-side mount tables to map file paths
to namenodes. This is managed in configuration using ViewFileSystem and the
viewfs:// URIs.

HDFS High Availability

The combination of replicating namenode metadata on multiple filesystems and using
the secondary namenode to create checkpoints protects against data loss, but it does
not provide high availability of the filesystem. The namenode is still a single point of
failure (SPOF). If it did fail, all clients—including MapReduce jobs—would be unable
to read, write, or list files, because the namenode is the sole repository of the metadata
and the file-to-block mapping. In such an event, the whole Hadoop system would ef-
fectively be out of service until a new namenode could be brought online.

To recover from a failed namenode in this situation, an administrator starts a new pri-
mary namenode with one of the filesystem metadata replicas and configures datanodes
and clients to use this new namenode. The new namenode is not able to serve requests
until it has (i) loaded its namespace image into memory, (ii) replayed its edit log, and
(iii) received enough block reports from the datanodes to leave safe mode. On large
clusters with many files and blocks, the time it takes for a namenode to start from cold
can be 30 minutes or more.
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The long recovery time is a problem for routine maintenance, too. In fact, because
unexpected failure of the namenode is so rare, the case for planned downtime is actually
more important in practice.

Hadoop 2 remedied this situation by adding support for HDEFS high availability (HA).
In this implementation, there are a pair of namenodes in an active-standby configura-
tion. In the event of the failure of the active namenode, the standby takes over its duties
to continue servicing client requests without a significant interruption. A few architec-
tural changes are needed to allow this to happen:

o Thenamenodes must use highly available shared storage to share the editlog. When
a standby namenode comes up, it reads up to the end of the shared edit log to
synchronize its state with the active namenode, and then continues to read new
entries as they are written by the active namenode.

 Datanodes must send block reports to both namenodes because the block mappings
are stored in a namenode’s memory, and not on disk.

o Clients must be configured to handle namenode failover, using a mechanism that
is transparent to users.

 The secondary namenode’s role is subsumed by the standby, which takes periodic
checkpoints of the active namenode’s namespace.

There are two choices for the highly available shared storage: an NFS filer, or a quorum
journal manager (QIM). The QJM is a dedicated HDFS implementation, designed for
the sole purpose of providing a highly available edit log, and is the recommended choice
for most HDFS installations. The QJM runs as a group of journal nodes, and each edit
must be written to a majority of the journal nodes. Typically, there are three journal
nodes, so the system can tolerate the loss of one of them. This arrangement is similar
to the way ZooKeeper works, although it is important to realize that the QJM imple-
mentation does not use ZooKeeper. (Note, however, that HDFS HA does use ZooKeeper
for electing the active namenode, as explained in the next section.)

If the active namenode fails, the standby can take over very quickly (in a few tens of
seconds) because it has the latest state available in memory: both the latest edit log entries
and an up-to-date block mapping. The actual observed failover time will be longer in
practice (around a minute or so), because the system needs to be conservative in de-
ciding that the active namenode has failed.

In the unlikely event of the standby being down when the active fails, the administrator
can still start the standby from cold. This is no worse than the non-HA case, and from
an operational point of view it’s an improvement, because the process is a standard
operational procedure built into Hadoop.
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Failover and fencing

The transition from the active namenode to the standby is managed by a new entity in
the system called the failover controller. There are various failover controllers, but the
default implementation uses ZooKeeper to ensure that only one namenode is active.
Each namenode runs a lightweight failover controller process whose job it is to monitor
its namenode for failures (using a simple heartbeating mechanism) and trigger a failover
should a namenode fail.

Failover may also be initiated manually by an administrator, for example, in the case of
routine maintenance. This is known as a graceful failover, since the failover controller
arranges an orderly transition for both namenodes to switch roles.

In the case of an ungraceful failover, however, it is impossible to be sure that the failed
namenode has stopped running. For example, a slow network or a network partition
can trigger a failover transition, even though the previously active namenode is still
running and thinks it is still the active namenode. The HA implementation goes to great
lengths to ensure that the previously active namenode is prevented from doing any
damage and causing corruption—a method known as fencing.

The QJM only allows one namenode to write to the edit log at one time; however, it is
still possible for the previously active namenode to serve stale read requests to clients,
so setting up an SSH fencing command that will kill the namenode’s process is a good
idea. Stronger fencing methods are required when using an NFS filer for the shared edit
log, since it is not possible to only allow one namenode to write at a time (this is why
QJM is recommended). The range of fencing mechanisms includes revoking the name-
node’s access to the shared storage directory (typically by using a vendor-specific NFS
command), and disabling its network port via a remote management command. As a
last resort, the previously active namenode can be fenced with a technique rather
graphically known as STONITH, or “shoot the other node in the head,” which uses a
specialized power distribution unit to forcibly power down the host machine.

Client failover is handled transparently by the client library. The simplest implemen-
tation uses client-side configuration to control failover. The HDFS URI uses a logical
hostname that is mapped to a pair of namenode addresses (in the configuration file),
and the client library tries each namenode address until the operation succeeds.

The Command-Line Interface

We're going to have a look at HDFS by interacting with it from the command line. There
are many other interfaces to HDFS, but the command line is one of the simplest and,
to many developers, the most familiar.

We are going to run HDFS on one machine, so first follow the instructions for setting
up Hadoop in pseudodistributed mode in Appendix A. Later we’ll see how to run HDEFS
on a cluster of machines to give us scalability and fault tolerance.
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There are two properties that we set in the pseudodistributed configuration that deserve
further explanation. The firstis fs.defaultFS, set to hdfs://localhost/, whichis used
to set a default filesystem for Hadoop.” Filesystems are specified by a URI, and here we
have used an hdfs URI to configure Hadoop to use HDFS by default. The HDFS dae-
mons will use this property to determine the host and port for the HDFS namenode.
We'll be running it on localhost, on the default HDFS port, 8020. And HDEFS clients will
use this property to work out where the namenode is running so they can connect
to it.

We set the second property, dfs.replication, to 1 so that HDFS doesn't replicate
filesystem blocks by the default factor of three. When running with a single datanode,
HDES can't replicate blocks to three datanodes, so it would perpetually warn about
blocks being under-replicated. This setting solves that problem.

Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the usual filesystem operations,
such as reading files, creating directories, moving files, deleting data, and listing direc-
tories. You can type hadoop fs -help to get detailed help on every command.

Start by copying a file from the local filesystem to HDEFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt \
hdfs://localhost/user/tom/quangle.txt

This command invokes Hadoopss filesystem shell command f's, which supports a num-
ber of subcommands—in this case, we are running -copyFromLocal. The local file
quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance running on
localhost. In fact, we could have omitted the scheme and host of the URI and picked up
the default, hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

We also could have used a relative path and copied the file to our home directory in
HDFS, which in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt
Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyToLocal quangle.txt quangle.copy.txt

% md5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = e7891a2627cf263a079fb0f18256ffb2
MD5 (quangle.copy.txt) = e789132627cf263a079fbof18256ffb2

5. In Hadoop 1, the name for this property was fs.default.name. Hadoop 2 introduced many new property
names, and deprecated the old ones (see “Which Properties Can I Set?” on page 150). This book uses the new
property names.
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The MD?5 digests are the same, showing that the file survived its trip to HDFS and is
back intact.

Finally, let’s look at an HDFS file listing. We create a directory first just to see how it is
displayed in the listing:

% hadoop fs -mkdir books

% hadoop fs -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2014-10-04 13:22 books
-rW-r--r-- 1 tom supergroup 119 2014-10-04 13:21 quangle.txt

The information returned is very similar to that returned by the Unix command 1s -
1, with a few minor differences. The first column shows the file mode. The second
column is the replication factor of the file (something a traditional Unix filesystem does
not have). Remember we set the default replication factor in the site-wide configuration
to be 1, which is why we see the same value here. The entry in this column is empty for
directories because the concept of replication does not apply to them—directories are
treated as metadata and stored by the namenode, not the datanodes. The third and
fourth columns show the file owner and group. The fifth column is the size of the file
in bytes, or zero for directories. The sixth and seventh columns are the last modified
date and time. Finally, the eighth column is the name of the file or directory.

File Permissions in HDFS

HDEFS has a permissions model for files and directories that is much like the POSIX
model. There are three types of permission: the read permission (r), the write permission
(w), and the execute permission (x). The read permission is required to read files or list
the contents of a directory. The write permission is required to write a file or, for a
directory, to create or delete files or directories in it. The execute permission is ignored
for a file because you can’t execute a file on HDFS (unlike POSIX), and for a directory
this permission is required to access its children.

Each file and directory has an owner, a group, and a mode. The mode is made up of the
permissions for the user who is the owner, the permissions for the users who are
members of the group, and the permissions for users who are neither the owners nor
members of the group.

By default, Hadoop runs with security disabled, which means that a client’s identity is
not authenticated. Because clients are remote, it is possible for a client to become an
arbitrary user simply by creating an account of that name on the remote system. This
is not possible if security is turned on; see “Security” on page 309. Either way; it is worth-
while having permissions enabled (as they are by default; see the dfs.permis

sions.enabled property) to avoid accidental modification or deletion of substantial
parts of the filesystem, either by users or by automated tools or programs.
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When permissions checking is enabled, the owner permissions are checked if the client’s
username matches the owner, and the group permissions are checked if the client is a
member of the group; otherwise, the other permissions are checked.

There is a concept of a superuser, which is the identity of the namenode process. Per-
missions checks are not performed for the superuser.

Hadoop Filesystems

Hadoop has an abstract notion of filesystems, of which HDFS is just one implementa-
tion. The Java abstract class org.apache.hadoop.fs.FileSystem represents the client
interface to a filesystem in Hadoop, and there are several concrete implementations.
The main ones that ship with Hadoop are described in Table 3-1.

Table 3-1. Hadoop filesystems

Filesystem URI scheme Java implementation Description

(all under org.apache.hadoop)

Local file fs.LocalFileSystem A filesystem for a locally connected disk
with client-side checksums. Use RawLocal
FileSysten for a local filesystem with no
checksums. See “LocalFileSystem” on page
99.

HDFS hdfs hdfs.DistributedFileSystem Hadoop’s distributed filesystem. HDFS is
designed to work efficiently in conjunction
with MapReduce.

WebHDFS ~ webhdfs  hdfs.web.WebHdfsFileSystem A filesystem providing authenticated read/
write access to HDFS over HTTP. See “HTTP”
on page 54.

Secure swebhdfs hdfs.web.SWebHdfsFileSystem The HTTPS version of WebHDFS.
WebHDFS

HAR har fs.HarFileSystem A filesystem layered on another filesystem
for archiving files. Hadoop Archives are used
for packing lots of files in HDFS into a single
archive file to reduce the namenode’s
memory usage. Use the hadoop
archive command to create HAR files.

View viewfs viewfs.ViewFileSystem A client-side mount table for other Hadoop
filesystems. Commonly used to create mount
points for federated namenodes (see “HDFS
Federation” on page 48).

FTP ftp fs.ftp.FTPFileSystem Afilesystem backed by an FTP server.

S3 s3a fs.s3a.S3AFileSystem A filesystem backed by Amazon S3. Replaces
the older s3n (S3 native) implementation.
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Filesystem URI scheme Java implementation Description

(all under org.apache.hadoop)

Azure wasb fs.azure.NativeAzureFileSystem A filesystem backed by Microsoft Azure.
Swift swift fs.swift.snative.SwiftNativeFile A filesystem backed by OpenStack Swift.
System

Hadoop provides many interfaces to its filesystems, and it generally uses the URI scheme
to pick the correct filesystem instance to communicate with. For example, the filesystem
shell that we met in the previous section operates with all Hadoop filesystems. To list
the files in the root directory of the local filesystem, type:

% hadoop fs -1s file:///

Although it is possible (and sometimes very convenient) to run MapReduce programs
that access any of these filesystems, when you are processing large volumes of data you
should choose a distributed filesystem that has the data locality optimization, notably
HDFS (see “Scaling Out” on page 30).

Interfaces

Hadoop is written in Java, so most Hadoop filesystem interactions are mediated through
the Java API. The filesystem shell, for example, is a Java application that uses the Java
FileSystenm class to provide filesystem operations. The other filesystem interfaces are
discussed briefly in this section. These interfaces are most commonly used with HDFS,
since the other filesystems in Hadoop typically have existing tools to access the under-
lying filesystem (FTP clients for FTP, S3 tools for S3, etc.), but many of them will work
with any Hadoop filesystem.

HTTP

By exposing its filesystem interface as a Java API, Hadoop makes it awkward for non-
Java applications to access HDFS. The HTTP REST API exposed by the WebHDES
protocol makes it easier for other languages to interact with HDFS. Note that the HTTP
interface is slower than the native Java client, so should be avoided for very large data
transfers if possible.

There are two ways of accessing HDFS over HTTP: directly, where the HDFS daemons
serve HTTP requests to clients; and via a proxy (or proxies), which accesses HDFS on
the client’s behalf using the usual DistributedFileSystem API. The two ways are il-
lustrated in Figure 3-1. Both use the WebHDEFS protocol.
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i) Direct access
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Client Datanode
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ii) HDFS proxies
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Figure 3-1. Accessing HDFS over HTTP directly and via a bank of HDFS proxies

In the first case, the embedded web servers in the namenode and datanodes act as
WebHDEFS endpoints. (WebHDES is enabled by default, since dfs.webhdfs.enabled is
set to true.) File metadata operations are handled by the namenode, while file read (and
write) operations are sent first to the namenode, which sends an HTTP redirect to the
client indicating the datanode to stream file data from (or to).

The second way of accessing HDES over HTTP relies on one or more standalone proxy
servers. (The proxies are stateless, so they can run behind a standard load balancer.) All
traffic to the cluster passes through the proxy, so the client never accesses the namenode
or datanode directly. This allows for stricter firewall and bandwidth-limiting policies
to be put in place. It's common to use a proxy for transfers between Hadoop clusters
located in different data centers, or when accessing a Hadoop cluster running in the
cloud from an external network.

The HittpFS proxy exposes the same HTTP (and HTTPS) interface as WebHDES, so
clients can access both using webhdfs (or swebhdfs) URIs. The HttpFS proxy is started
independently of the namenode and datanode daemons, using the httpfs.sh script, and
by default listens on a different port number (14000).

C

Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface
(it was written as a C library for accessing HDFS, but despite its name it can be used to
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access any Hadoop filesystem). It works using the Java Native Interface (JNI) to call a
Java filesystem client. There is also a libwebhdfs library that uses the WebHDFS interface
described in the previous section.

The C APl is very similar to the Java one, but it typically lags the Java one, so some newer
features may not be supported. You can find the header file, hdfs.h, in the include
directory of the Apache Hadoop binary tarball distribution.

The Apache Hadoop binary tarball comes with prebuilt [ibhdfs binaries for 64-bit Linux,
but for other platforms you will need to build them yourself by following the BUILD
ING.txt instructions at the top level of the source tree.

NFS

Itis possible to mount HDFS on alocal client’s filesystem using Hadoop’s NFSv3 gateway.
You can then use Unix utilities (such as 1s and cat) to interact with the filesystem,
upload files, and in general use POSIX libraries to access the filesystem from any pro-
gramming language. Appending to a file works, but random modifications of a file do
not, since HDFS can only write to the end of a file.

Consult the Hadoop documentation for how to configure and run the NFS gateway and
connect to it from a client.

FUSE

Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space
to be integrated as Unix filesystems. Hadoop’s Fuse-DFS contrib module allows HDES
(or any Hadoop filesystem) to be mounted as a standard local filesystem. Fuse-DFS is
implemented in C using libhdfs as the interface to HDFS. At the time of writing, the
Hadoop NFS gateway is the more robust solution to mounting HDEFS, so should be
preferred over Fuse-DFS.

The Java Interface

In this section, we dig into the Hadoop FileSystenm class: the API for interacting with
one of Hadoopss filesystems.® Although we focus mainly on the HDFS implementation,
DistributedFileSystem, in general you should strive to write your code against the
FileSystem abstract class, to retain portability across filesystems. This is very useful
when testing your program, for example, because you can rapidly run tests using data
stored on the local filesystem.

6. InHadoop 2 and later, there is a new filesystem interface called FileContext with better handling of multiple
filesystems (so a single FileContext can resolve multiple filesystem schemes, for example) and a cleaner,
more consistent interface. FileSysten is still more widely used, however.
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Reading Data from a Hadoop URL

One of the simplest ways to read a file from a Hadoop filesystem is by using a
java.net.URL object to open a stream to read the data from. The general idiom is:

InputStream in = null;

try {
in = new URL("hdfs://host/path").openStream();
// process in

} finally {
I0Utils.closeStream(in);

}

There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL
scheme. This is achieved by calling the setURLStreamHandlerFactory() method on
URL with an instance of FsUrlStreamHandlerFactory. This method can be called only
once per JVM, so it is typically executed in a static block. This limitation means that if
some other part of your program—perhaps a third-party component outside your con-
trol—sets a URLStreamHandlerFactory, you won't be able to use this approach for
reading data from Hadoop. The next section discusses an alternative.

Example 3-1 shows a program for displaying files from Hadoop filesystems on standard
output, like the Unix cat command.

Example 3-1. Displaying files from a Hadoop filesystem on standard output using a
URLStreamHandler

public class URLCat {

static {
URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());

}

public static void main(String[] args) throws Exception {
InputStream in = null;

try {
in = new URL(args[0]).openStream();
I0Utils.copyBytes(in, System.out, 4096, false);

} finally {
I0Utils.closeStream(in);

}

}
}

We make use of the handy I0Uti1s class that comes with Hadoop for closing the stream
in the finally clause, and also for copying bytes between the input stream and the
output stream (System.out, in this case). The last two arguments to the copyBytes()
method are the buffer size used for copying and whether to close the streams when the
copy is complete. We close the input stream ourselves, and System.out doesn’t need to
be closed.
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Here’s a sample run:’

% export HADOOP_CLASSPATH=hadoop-examples.jar

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

Reading Data Using the FileSystem API

As the previous section explained, sometimes it is impossible to set a URLStreamHand
lerFactory for your application. In this case, you will need to use the FileSystem API
to open an input stream for a file.

A file in a Hadoop filesystem is represented by a Hadoop Path object (and not
a java.io.File object, since its semantics are too closely tied to the local filesystem).
You can think of a Path as a Hadoop filesystem URI, such as hdfs://localhost/user/
tom/quangle. txt.

FileSystemis a general filesystem API, so the first step is to retrieve an instance for the
filesystem we want to use—HDFS, in this case. There are several static factory methods
for getting a FileSystem instance:

public static FileSystem get(Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf, String user)
throws IOException

A Configuration object encapsulates a client or server’s configuration, which is set
using configuration files read from the classpath, such as etc/hadoop/core-site.xml. The
first method returns the default filesystem (as specified in core-site.xml, or the default
local filesystem if not specified there). The second uses the given URI’s scheme and
authority to determine the filesystem to use, falling back to the default filesystem if no
scheme is specified in the given URI. The third retrieves the filesystem as the given user,
which is important in the context of security (see “Security” on page 309).

In some cases, you may want to retrieve a local filesystem instance. For this, you can
use the convenience method getlLocal():

public static LocalFileSystem getlLocal(Configuration conf) throws IOException

With a FileSystem instance in hand, we invoke an open() method to get the input
stream for a file:

public FSDatalInputStream open(Path f) throws IOException
public abstract FSDataInputStream open(Path f, int bufferSize) throws IOException

7. The text is from The Quangle Wangle’s Hat by Edward Lear.
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The first method uses a default buffer size of 4 KB.

Putting this together, we can rewrite Example 3-1 as shown in Example 3-2.

Example 3-2. Displaying files from a Hadoop filesystem on standard output by using
the FileSystem directly

public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
InputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

The program runs as follows:

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDatalnputStream

The open() method on FileSystemactually returns an FSDataInputStreamrather than
a standard java.io class. This class is a specialization of java.ilo.DataInputStream
with support for random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;

public class FSDataInputStream extends DataInputStream
implements Seekable, PositionedReadable {
// implementation elided
}

The Seekable interface permits seeking to a position in the file and provides a query
method for the current offset from the start of the file (getPos()):

public interface Seekable {
void seek(long pos) throws IOException;
long getPos() throws IOException;

}
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Calling seek() with a position that is greater than the length of the file will result in an
I0Exception. Unlike the skip() method of java.io.InputStream, which positions the
stream at a point later than the current position, seek() can move to an arbitrary,
absolute position in the file.

A simple extension of Example 3-2 is shown in Example 3-3, which writes a file to
standard output twice: after writing it once, it seeks to the start of the file and streams
through it once again.

Example 3-3. Displaying files from a Hadoop filesystem on standard output twice, by
using seek()

public class FileSystemDoubleCat {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
FSDataInputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
in.seek(0); // go back to the start of the file
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

Here’s the result of running it on a small file:

% hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDataInputStream also implements the PositionedReadable interface for reading
parts of a file at a given offset:

public interface PositionedReadable {

public int read(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer, int offset, int length)
throws IOException;
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public void readFully(long position, byte[] buffer) throws IOException;
}

The read() method reads up to length bytes from the given position in the file into
the buffer at the given of fset in the buffer. The return value is the number of bytes
actually read; callers should check this value, as it may be less than length. The read
Fully() methods will read length bytes into the buffer (or buffer.length bytes for
the version that just takes a byte array buffer), unless the end of the file is reached, in
which case an EOFException is thrown.

All of these methods preserve the current offset in the file and are thread safe (although
FSDataInputStreamisnotdesigned for concurrent access; therefore, it’s better to create
multiple instances), so they provide a convenient way to access another part of the file—
metadata, perhaps—while reading the main body of the file.

Finally, bear in mind that calling seek() is a relatively expensive operation and should
be done sparingly. You should structure your application access patterns to rely on
streaming data (by using MapReduce, for example) rather than performing a large
number of seeks.

Writing Data

The FileSystenm class has a number of methods for creating a file. The simplest is the
method that takes a Path object for the file to be created and returns an output stream
to write to:

public FSDataOutputStream create(Path f) throws IOException

There are overloaded versions of this method that allow you to specify whether to for-
cibly overwrite existing files, the replication factor of the file, the buffer size to use when
writing the file, the block size for the file, and file permissions.

The create() methods create any parent directories of the file to be

written that don’t already exist. Though convenient, this behavior

1 may be unexpected. If you want the write to fail when the parent

\ directory doesn’t exist, you should check for the existence of the
parent directory first by calling the exists() method. Alternative-
ly, use FileContext, which allows you to control whether parent
directories are created or not.

There’s also an overloaded method for passing a callback interface, Progressable, so
your application can be notified of the progress of the data being written to the
datanodes:
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package org.apache.hadoop.util;

public interface Progressable {
public void progress();

}

As an alternative to creating a new file, you can append to an existing file using the
append() method (there are also some other overloaded versions):

public FSDataOutputStream append(Path f) throws IOException

The append operation allows a single writer to modify an already written file by opening
it and writing data from the final offset in the file. With this API, applications that
produce unbounded files, such aslogfiles, can write to an existing file after having closed
it. The append operation is optional and not implemented by all Hadoop filesystems.
For example, HDEFS supports append, but S3 filesystems don't.

Example 3-4 shows how to copy alocal file to a Hadoop filesystem. We illustrate progress
by printing a period every time the progress() method is called by Hadoop, which is
after each 64 KB packet of data is written to the datanode pipeline. (Note that this
particular behavior is not specified by the API, so it is subject to change in later versions
of Hadoop. The API merely allows you to infer that “something is happening.”)

Example 3-4. Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {
public static void main(String[] args) throws Exception {
String localSrc = args[0];
String dst = args[1];

InputStream in = new BufferedInputStream(new FileInputStream(localSrc));

Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst), new Progressable() {
public void progress() {
System.out.print(".");
}
s

I0Utils.copyBytes(in, out, 4096, true);
}
}

Typical usage:

% hadoop FileCopyWithProgress input/docs/1400-8.txt
hdfs://localhost/user/tom/1400-8.txt

Currently, none of the other Hadoop filesystems call progress () during writes. Progress
is important in MapReduce applications, as you will see in later chapters.
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FSDataOutputStream

The create() method on FileSystem returns an FSDataOutputStream, which, like
FSDataInputStream, has a method for querying the current position in the file:

package org.apache.hadoop.fs;
public class FSDataOutputStream extends DataOutputStream implements Syncable {

public long getPos() throws IOException {
// implementation elided
}

// implementation elided

}

However, unlike FSDataInputStream, FSDataOutputStream does not permit seeking.
This is because HDFS allows only sequential writes to an open file or appends to an
already written file. In other words, there is no support for writing to anywhere other
than the end of the file, so there is no value in being able to seek while writing.

Directories

FileSystem provides a method to create a directory:
public boolean mkdirs(Path f) throws IOException

This method creates all of the necessary parent directories if they don’t already exist,
just like the java.io.File’s mkdirs() method. It returns true if the directory (and all
parent directories) was (were) successfully created.

Often, you don’t need to explicitly create a directory, because writing a file by calling
create() will automatically create any parent directories.

Querying the Filesystem

File metadata: FileStatus

An important feature of any filesystem is the ability to navigate its directory structure
and retrieve information about the files and directories that it stores. The FileStatus
class encapsulates filesystem metadata for files and directories, including file length,
block size, replication, modification time, ownership, and permission information.

The method getFileStatus() on FileSystem provides a way of getting a FileStatus
object for a single file or directory. Example 3-5 shows an example of its use.
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Example 3-5. Demonstrating file status information

public class ShowFileStatusTest {

private MiniDFSCluster cluster; // use an in-process HDFS cluster for testing
private FileSystem fs;

public void setUp() throws IOException {
Configuration conf = new Configuration();
if (System.getProperty("test.build.data") == null) {
System.setProperty("test.build.data", "/tmp");
}
cluster = new MiniDFSCluster.Builder(conf).build();
fs = cluster.getFileSystem();
OutputStream out = fs.create(new Path("/dir/file"));
out.write("content".getBytes("UTF-8"));
out.close();

public void tearDown() throws IOException {
if (fs != null) { fs.close(); }
if (cluster != null) { cluster.shutdown(); }
}

(expected = FileNotFoundException.class)
public void throwsFileNotFoundForNonExistentFile() throws IOException {
fs.getFileStatus(new Path("no-such-file"));
}

public void fileStatusForFile() throws IOException {
Path file = new Path("/dir/file");
FileStatus stat = fs.getFileStatus(file);
assertThat(stat.getPath().toUri().getPath(), is("/dir/file"));
assertThat(stat.isDirectory(), is(false));
assertThat(stat.getLen(), is(7L));
assertThat(stat.getModificationTime(),
is(lessThanOrEqualTo(System.currentTimeMillis())));
assertThat(stat.getReplication(), is((short) 1));
assertThat(stat.getBlockSize(), 1s(128 * 1024 * 1024L));
assertThat(stat.getOwner(), is(System.getProperty("user.name")));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rw-r--r--"));

public void fileStatusForDirectory() throws IOException {
Path dir = new Path("/dir");
FileStatus stat = fs.getFileStatus(dir);
assertThat(stat.getPath().toUri().getPath(), is("/dir"));
assertThat(stat.isDirectory(), is(true));
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assertThat(stat.getlLen(), is(0L));
assertThat(stat.getModificationTime(),
is(lessThanOrEqualTo(System.currentTimeMillis())));
assertThat(stat.getReplication(), is((short) 0));
assertThat(stat.getBlockSize(), 1s(0L));
assertThat(stat.getOwner(), is(System.getProperty("user.name")));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rwxr-xr-x"));

}

If no file or directory exists, a FileNotFoundException is thrown. However, if you are
interested only in the existence of a file or directory, the exists() method on
FileSystem is more convenient:

public boolean exists(Path f) throws IOException

Listing files

Finding information on a single file or directory is useful, but you also often need to be
able to list the contents of a directory. That’s what FileSystem’s listStatus() methods
are for:

public FileStatus[] listStatus(Path f) throws IOException
public FileStatus[] listStatus(Path f, PathFilter filter) throws IOException
public FileStatus[] listStatus(Path[] files) throws IOException
public FileStatus[] listStatus(Path[] files, PathFilter filter)
throws IOException

When the argument is a file, the simplest variant returns an array of FileStatus objects
oflength 1. When the argument is a directory, it returns zero or more FileStatus objects
representing the files and directories contained in the directory.

Overloaded variants allow a PathFilter to be supplied to restrict the files and direc-
tories to match. You will see an example of this in the section “PathFilter” on page 67.
Finally, if you specify an array of paths, the result is a shortcut for calling the equivalent
single-path listStatus() method for each path in turn and accumulating the
FileStatus object arrays in a single array. This can be useful for building up lists of
input files to process from distinct parts of the filesystem tree. Example 3-6 is a simple
demonstration of this idea. Note the use of stat2Paths() in Hadoop’s FileUtil for

turning an array of FileStatus objects into an array of Path objects.

Example 3-6. Showing the file statuses for a collection of paths in a Hadoop filesystem

public class ListStatus {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

The Java Interface | 65



Path[] paths = new Path[args.length];

for (int 1 = 0; 1 < paths.length; i++) {
paths[1] = new Path(args[i]);

}

FileStatus[] status = fs.listStatus(paths);
Path[] listedPaths = FileUtil.stat2Paths(status);
for (Path p : listedPaths) {
System.out.println(p);
}
}
}

We can use this program to find the union of directory listings for a collection of paths:

% hadoop ListStatus hdfs://localhost/ hdfs://localhost/user/tom
hdfs://localhost/user

hdfs://localhost/user/tom/books
hdfs://localhost/user/tom/quangle. txt

File patterns

It is a common requirement to process sets of files in a single operation. For example,
a MapReduce job for log processing might analyze a month’s worth of files contained
in a number of directories. Rather than having to enumerate each file and directory to
specify the input, it is convenient to use wildcard characters to match multiple files with
a single expression, an operation that is known as globbing. Hadoop provides two
FileSystem methods for processing globs:

public FileStatus[] globStatus(Path pathPattern) throws IOException
public FileStatus[] globStatus(Path pathPattern, PathFilter filter)
throws IOException

The globStatus() methods return an array of FileStatus objects whose paths match
the supplied pattern, sorted by path. An optional PathFilter can be specified to restrict
the matches further.

Hadoop supports the same set of glob characters as the Unix bash shell (see Table 3-2).

Table 3-2. Glob characters and their meanings

Glob ETN T Matches

* asterisk Matches zero or more characters

? question mark Matches a single character

[ab] character class Matches a single character in the set {a, b}

[~ab]  negated character class ~ Matches a single character that is not in the set {a, b}

[a-b]  character range Matches a single character in the (closed) range [a, b], where a is lexicographically
less than or equal to b
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Glob Name Matches

[~a-b] negated character range Matches a single character that is not in the (closed) range [a, b], where a'is
lexicographically less than or equal to b

{a,b} alternation Matches either expression a or b

\c escaped character Matches character c when it is a metacharacter

Imagine that logfiles are stored in a directory structure organized hierarchically by
date. So, logfiles for the last day of 2007 would go in a directory named /2007/12/31, for
example. Suppose that the full file listing is:

/
}— 2007/
| 12/
I — 30/
| — 31/
L— 2008/
L— o1/
— o1/
L— 02/

Here are some file globs and their expansions:

Glob Expansion

/* /2007 /2008

[*[* /2007/12 /2008/01
[*[12/* /2007/12/30 /2007/12/31
/200? /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008
/200[~01234569] /2007 /2008
/*/*/{31,01} /2007/12/31 /2008/01/01
*/*/3{0,1} /2007/12/30/2007/12/31

/*/{12/31,01/01} /2007/12/31/2008/01/01

PathFilter

Glob patterns are not always powerful enough to describe a set of files you want to
access. For example, it is not generally possible to exclude a particular file using a glob
pattern. The 1istStatus() and globStatus() methods of FileSystemtake an optional
PathFilter, which allows programmatic control over matching:

package org.apache.hadoop.fs;

public interface PathFilter {
boolean accept(Path path);
}
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PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File
objects.

Example 3-7 shows a PathFilter for excluding paths that match a regular expression.

Example 3-7. A PathFilter for excluding paths that match a regular expression
public class RegexExcludePathFilter implements PathFilter {

private final String regex;

public RegexExcludePathFilter(String regex) {
this.regex = regex;

}

public boolean accept(Path path) {
return !path.toString().matches(regex);
}
}

The filter passes only those files that don’t match the regular expression. After the glob
picks out an initial set of files to include, the filter is used to refine the results. For
example:

fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("~.*/2007/12/31$"))

will expand to /2007/12/30.

Filters can act only on a file’s name, as represented by a Path. They can't use a file’s
properties, such as creation time, as their basis. Nevertheless, they can perform matching
that neither glob patterns nor regular expressions can achieve. For example, if you store
files in a directory structure that is laid out by date (like in the previous section), you
can write a PathFilter to pick out files that fall in a given date range.

Deleting Data

Use the delete() method on FileSystem to permanently remove files or directories:
public boolean delete(Path f, boolean recursive) throws IOException

If f is a file or an empty directory, the value of recursive is ignored. A nonempty
directory is deleted, along with its contents, only if recursive is true (otherwise, an
I0Exception is thrown).
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Data Flow

Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDES, the name-
node, and the datanodes, consider Figure 3-2, which shows the main sequence of events
when reading a file.

2: get block locations 8
HDES 'Y NameNode
client
namenode
cient JUM
dientnode i e
kreadi 5: read
v T
DataNode DataNode DataNode
datanode datanode datanode

Figure 3-2. A client reading data from HDFS

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2).
DistributedFileSystenm calls the namenode, using remote procedure calls (RPCs), to
determine the locations of the first few blocks in the file (step 2). For each block, the
namenode returns the addresses of the datanodes that have a copy of that block. Fur-
thermore, the datanodes are sorted according to their proximity to the client (according
to the topology of the cluster’s network; see “Network Topology and Hadoop” on page
70). If the client is itself a datanode (in the case of a MapReduce task, for instance), the
client will read from the local datanode if that datanode hosts a copy of the block (see
also Figure 2-2 and “Short-circuit local reads” on page 308).

The DistributedFileSystem returns an FSDataInputStream (an input stream that
supports file seeks) to the client for it to read data from. FSDataInputStream in turn
wraps a DFSInputStream, which manages the datanode and namenode I/0O.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
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(closest) datanode for the first block in the file. Data is streamed from the datanode back
to the client, which calls read() repeatedly on the stream (step 4). When the end of the
block is reached, DFSInputStream will close the connection to the datanode, then find
the best datanode for the next block (step 5). This happens transparently to the client,
which from its point of view is just reading a continuous stream.

Blocks are read in order, with the DFSInputStream opening new connections to
datanodes as the client reads through the stream. It will also call the namenode to retrieve
the datanode locations for the next batch of blocks as needed. When the client has
finished reading, it calls close() on the FSDataInputStream (step 6).

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, it will try the next closest one for that block. It will also remember datanodes
that have failed so that it doesn’t needlessly retry them for later blocks. The DFSInput
Stream also verifies checksums for the data transferred to it from the datanode. If a
corrupted block is found, the DFSInputStream attempts to read a replica of the block
from another datanode; it also reports the corrupted block to the namenode.

One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDEFS to scale to a large number of concurrent clients because the data
traffic is spread across all the datanodes in the cluster. Meanwhile, the namenode merely
has to service block location requests (which it stores in memory, making them very
efficient) and does not, for example, serve data, which would quickly become a bottle-
neck as the number of clients grew.

Network Topology and Hadoop

What does it mean for two nodes in a local network to be “close” to each other? In the
context of high-volume data processing, the limiting factor is the rate at which we can
transfer data between nodes—bandwidth is a scarce commodity. The idea is to use the
bandwidth between two nodes as a measure of distance.

Rather than measuring bandwidth between nodes, which can be difficult to do in prac-
tice (it requires a quiet cluster, and the number of pairs of nodes in a cluster grows as
the square of the number of nodes), Hadoop takes a simple approach in which the
network is represented as a tree and the distance between two nodes is the sum of their
distances to their closest common ancestor. Levels in the tree are not predefined, but it
is common to have levels that correspond to the data center, the rack, and the node that
aprocessis running on. The idea is that the bandwidth available for each of the following
scenarios becomes progressively less:

o Processes on the same node

« Different nodes on the same rack
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o Nodes on different racks in the same data center

o Nodes in different data centers®

For example, imagine a node n1 on rack rI in data center d1. This can be represented
as /d1/r1/nl. Using this notation, here are the distances for the four scenarios:

o distance(/d1/r1/nl, /d1/r1/nl) = 0 (processes on the same node)

o distance(/d1/rl/nl, /d1/r1/n2) = 2 (different nodes on the same rack)

e distance(/d1/r1/nl, /d1/r2/n3) =4 (nodes on different racks in the same data center)
o distance(/d1/r1/nl, /d2/r3/n4) = 6 (nodes in different data centers)

This is illustrated schematically in Figure 3-3. (Mathematically inclined readers will
notice that this is an example of a distance metric.)

=

d=2}

r1 r2 3 rack

d1 d2 data center

Figure 3-3. Network distance in Hadoop

Finally, it is important to realize that Hadoop cannot magically discover your network
topology for you; it needs some help (we’ll cover how to configure topology in “Network
Topology” on page 286). By default, though, it assumes that the network is flat—a single-
level hierarchy—or in other words, that all nodes are on a single rack in a single data
center. For small clusters, this may actually be the case, and no further configuration is
required.

8. At the time of this writing, Hadoop is not suited for running across data centers.
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Anatomy of a File Write

Next we'll look at how files are written to HDFES. Although quite detailed, it is instructive
to understand the data flow because it clarifies HDFS’s coherency model.

We're going to consider the case of creating a new file, writing data to it, then closing
the file. This is illustrated in Figure 3-4.

T Distributed 2: create
HDFS e FileSystem 7: complete NameNode
client .

FSData namenode
OutputStream

cient JVM A

vV Y

cient node

4: write packet 5: ack packet

A

Pipeline of DataNode | DataNode  [J % DataNode
datanodes
datanode datanode datanode
4

Figure 3-4. A client writing data to HDFS

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a
new file in the filesystem’s namespace, with no blocks associated with it (step 2). The
namenode performs various checks to make sure the file doesn't already exist and that
the client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
I0Exception. The DistributedFileSystem returns an FSDataOutputStream for the
client to start writing data to. Just as in the read case, FSDataOutputStream wraps a
DFSOutputStream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), the DFSOutputStreanm splits it into packets, which it
writes to an internal queue called the data queue. The data queue is consumed by the
DataStreamer, which is responsible for asking the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline, and here we’ll assume the replication level is three, so there are three nodes in
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the pipeline. The DataStreamer streams the packets to the first datanode in the pipeline,
which stores each packet and forwards it to the second datanode in the pipeline. Sim-
ilarly, the second datanode stores the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

The DFSOutputStream also maintains an internal queue of packets that are waiting to
be acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).

If any datanode fails while data is being written to it, then the following actions are
taken, which are transparent to the client writing the data. First, the pipeline is closed,
and any packets in the ack queue are added to the front of the data queue so that
datanodes that are downstream from the failed node will not miss any packets. The
current block on the good datanodes is given a new identity, which is communicated to
the namenode, so that the partial block on the failed datanode will be deleted if the failed
datanode recovers later on. The failed datanode is removed from the pipeline, and a
new pipeline is constructed from the two good datanodes. The remainder of the block’s
data is written to the good datanodes in the pipeline. The namenode notices that the
block is under-replicated, and it arranges for a further replica to be created on another
node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, for multiple datanodes to fail while a block is being written.
Aslong as dfs.namenode.replication.min replicas (which defaults to 1) are written,
the write will succeed, and the block will be asynchronously replicated across the cluster
until its target replication factor is reached (dfs.replication, which defaults to 3).

When the client has finished writing data, it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac-
knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (because Data
Streamer asks for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.

Replica Placement

How does the namenode choose which datanodes to store replicas on? There’s a trade-
off between reliability and write bandwidth and read bandwidth here. For example,
placing all replicas on a single node incurs the lowest write bandwidth penalty (since
the replication pipeline runs on a single node), but this offers no real redundancy (if the
node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack
reads. At the other extreme, placing replicas in different data centers may maximize
redundancy, but at the cost of bandwidth. Even in the same data center (which is what
all Hadoop clusters to date have run in), there are a variety of possible placement
strategies.
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Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes in the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topology
into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

node

rack

data center

Figure 3-5. A typical replica pipeline

Opverall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model

A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));

74 | Chapter3: The Hadoop Distributed Filesystem



However, any content written to the file is not guaranteed to be visible, even if the stream
is flushed. So, the file appears to have a length of zero:

Path p = new Path("p");

OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0OL));

Once more than a block’s worth of data has been written, the first block will be visible
to new readers. This is true of subsequent blocks, too: it is always the current block being
written that is not visible to other readers.

HDES provides a way to force all buffers to be flushed to the datanodes via the hflush()
method on FSDataOutputStream. After a successful return from hflush(), HDES guar-
antees that the data written up to that point in the file has reached all the datanodes in
the write pipeline and is visible to all new readers:

Path p = new Path("p");

FSDataOutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));

out.hflush();

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

Note that hflush() does not guarantee that the datanodes have written the data to disk,
only that it’s in the datanodes’ memory (so in the event of a data center power outage,
for example, data could be lost). For this stronger guarantee, use hsync() instead.’

The behavior of hsync() is similar to that of the fsync() system call in POSIX that
commits buffered data for a file descriptor. For example, using the standard Java API
to write a local file, we are guaranteed to see the content after flushing the stream and
synchronizing:

FileOutputStream out = new FileOutputStream(localFile);

out.write("content".getBytes("UTF-8"));

out.flush(); // flush to operating system

out.getFD().sync(); // sync to disk
assertThat(localFile.length(), is(((long) "content".length())));

Closing a file in HDFS performs an implicit hflush(), too:

Path p = new Path("p");

OutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.close();

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

9. In Hadoop 1.x, hflush() was called sync(), and hsync() did not exist.
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Consequences for application design

This coherency model has implications for the way you design applications. With no
calls to hflush() or hsync(), you should be prepared to lose up to a block of data in
the event of client or system failure. For many applications, this is unacceptable, so you
should call hflush() at suitable points, such as after writing a certain number of records
or number of bytes. Though the hflush() operation is designed to not unduly tax HDFS,
it does have some overhead (and hsync() has more), so there is a trade-off between
data robustness and throughput. What constitutes an acceptable trade-off is application
dependent, and suitable values can be selected after measuring your application’s per-
formance with different hflush() (or hsync()) frequencies.

Parallel Copying with distcp

The HDFS access patterns that we have seen so far focus on single-threaded access. It’s
possible to act on a collection of files—by specifying file globs, for example—but for
efficient parallel processing of these files, you would have to write a program yourself.
Hadoop comes with a useful program called distcp for copying data to and from Hadoop
filesystems in parallel.

One use for distcp is as an efficient replacement for hadoop fs -cp. For example, you
can copy one file to another with:*

% hadoop distcp filel file2
You can also copy directories:
% hadoop distcp dirl dir2

If dir2 does not exist, it will be created, and the contents of the dirI directory will be
copied there. You can specify multiple source paths, and all will be copied to the
destination.

If dir2 already exists, then dirl will be copied under it, creating the directory structure
dir2/dir]. If this isn’t what you want, you can supply the -overwrite option to keep the
same directory structure and force files to be overwritten. You can also update only the
files that have changed using the -update option. This is best shown with an example.
If we changed a file in the dirl subtree, we could synchronize the change with dir2 by
running:

% hadoop distcp -update dirl dir2

10. Even for a single file copy, the distcp variant is preferred for large files since hadoop fs -cp copies the file
via the client running the command.
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If you are unsure of the effect of a distcp operation, it is a good idea
to try it out on a small test directory tree first.

distcp is implemented as a MapReduce job where the work of copying is done by the
maps that run in parallel across the cluster. There are no reducers. Each file is copied
by a single map, and distcp tries to give each map approximately the same amount of
data by bucketing files into roughly equal allocations. By default, up to 20 maps are used,
but this can be changed by specifying the -m argument to distcp.

A very common use case for distcp is for transferring data between two HDFS clusters.
For example, the following creates a backup of the first cluster’s /foo directory on the
second:

% hadoop distcp -update -delete -p hdfs://namenodel/foo hdfs://namenode2/foo

The -delete flag causes distcp to delete any files or directories from the destination that
are not present in the source, and -p means that file status attributes like permissions,
block size, and replication are preserved. You can run distcp with no arguments to see
precise usage instructions.

If the two clusters are running incompatible versions of HDFS, then you can use the
webhdf's protocol to distcp between them:

% hadoop distcp webhdfs://namenodel:50070/foo webhdfs://namenode2:50070/foo

Another variant is to use an HttpFs proxy as the distcp source or destination (again
using the webhdfs protocol), which has the advantage of being able to set firewall and
bandwidth controls (see “HTTP” on page 54).

Keeping an HDFS Cluster Balanced

When copying data into HDEFS, it’s important to consider cluster balance. HDFS works
best when the file blocks are evenly spread across the cluster, so you want to ensure that
distcp doesn’t disrupt this. For example, if you specified -m 1, a single map would do
the copy, which—apart from being slow and not using the cluster resources efficiently—
would mean that the first replica of each block would reside on the node running the
map (until the disk filled up). The second and third replicas would be spread across the
cluster, but this one node would be unbalanced. By having more maps than nodes in
the cluster, this problem is avoided. For this reason, it’s best to start by running distcp
with the default of 20 maps per node.
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However, it’s not always possible to prevent a cluster from becoming unbalanced. Per-
haps you want to limit the number of maps so that some of the nodes can be used by
other jobs. In this case, you can use the balancer tool (see “Balancer” on page 329) to
subsequently even out the block distribution across the cluster.
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CHAPTER 4
YARN

Apache YARN (Yet Another Resource Negotiator) is Hadoop’s cluster resource man-
agement system. YARN was introduced in Hadoop 2 to improve the MapReduce im-
plementation, but it is general enough to support other distributed computing para-
digms as well.

YARN provides APIs for requesting and working with cluster resources, but these APIs
are not typically used directly by user code. Instead, users write to higher-level APIs
provided by distributed computing frameworks, which themselves are built on YARN
and hide the resource management details from the user. The situation is illustrated in
Figure 4-1, which shows some distributed computing frameworks (MapReduce, Spark,
and so on) running as YARN applications on the cluster compute layer (YARN) and the
cluster storage layer (HDFS and HBase).

Application MapReduce ] [ Spark ] [ Tez ] [

Compute YARN

Storage HDFS and HBase

Figure 4-1. YARN applications

There is also a layer of applications that build on the frameworks shown in Figure 4-1.
Pig, Hive, and Crunch are all examples of processing frameworks that run on MapRe-
duce, Spark, or Tez (or on all three), and don't interact with YARN directly.
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This chapter walks through the features in YARN and provides a basis for understanding
later chapters in Part IV that cover Hadoop’s distributed processing frameworks.

Anatomy of a YARN Application Run

YARN provides its core services via two types of long-running daemon: a resource
manager (one per cluster) to manage the use of resources across the cluster, and node
managers running on all the nodes in the cluster to launch and monitor containers. A
container executes an application-specific process with a constrained set of resources
(memory, CPU, and so on). Depending on how YARN is configured (see “YARN” on
page 300), a container may be a Unix process or a Linux cgroup. Figure 4-2 illustrates how
YARN runs an application.

Fm——————— a P ——— a2
| | | |
! | Application | ! ! !
1 X 4 - |
! dient T — ResourceManager !
| | | |
. . . VARN "
1 dientnode  application 1 resource managernode
L e e ) <4 L e e ;‘____.I
2a: start container
0 h
' 1 [3:allocate resources (heartbeat)
| NodeManager 1
| ]
| ]
| 2b:launch H
1 A 4 1
: Container : [TTTTTTTTTTTT H
! L 1 1
! Application ! ! !
| +
! process | dastart i NodeManager |
container ! !
: ' | 4b:launch !
 node manager node . y H
: Container :
| ]
. —
' Application H
| process 1
| ]
[} ]
| node manager node '

Figure 4-2. How YARN runs an application

To run an application on YARN, a client contacts the resource manager and asks it to
run an application master process (step 1 in Figure 4-2). The resource manager then
finds a node manager that can launch the application master in a container (steps 2a
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and 2b).! Precisely what the application master does once it is running depends on the
application. It could simply run a computation in the container it is running in and
return the result to the client. Or it could request more containers from the resource
managers (step 3), and use them to run a distributed computation (steps 4a and 4b).
The latter is what the MapReduce YARN application does, which we’ll look at in more
detail in “Anatomy of a MapReduce Job Run” on page 185.

Notice from Figure 4-2 that YARN itself does not provide any way for the parts of the
application (client, master, process) to communicate with one another. Most nontrivial
YARN applications use some form of remote communication (such as Hadoop’s RPC
layer) to pass status updates and results back to the client, but these are specific to the
application.

Resource Requests

YARN has a flexible model for making resource requests. A request for a set of containers
can express the amount of computer resources required for each container (memory
and CPU), as well as locality constraints for the containers in that request.

Locality is critical in ensuring that distributed data processing algorithms use the cluster
bandwidth efficiently;* so YARN allows an application to specify locality constraints for
the containers it is requesting. Locality constraints can be used to request a container
on a specific node or rack, or anywhere on the cluster (off-rack).

Sometimes the locality constraint cannot be met, in which case either no allocation is
made or, optionally, the constraint can be loosened. For example, if a specific node was
requested but it is not possible to start a container on it (because other containers are
running on it), then YARN will try to start a container on a node in the same rack, or,
if that’s not possible, on any node in the cluster.

In the common case of launching a container to process an HDFS block (to run a map
task in MapReduce, say), the application will request a container on one of the nodes
hosting the block’s three replicas, or on a node in one of the racks hosting the replicas,
or, failing that, on any node in the cluster.

A YARN application can make resource requests at any time while it is running. For
example, an application can make all of its requests up front, or it can take a more
dynamic approach whereby it requests more resources dynamically to meet the chang-
ing needs of the application.

1. It’s also possible for the client to start the application master, possibly outside the cluster, or in the same JVM
as the client. This is called an unmanaged application master.

2. For more on this topic see “Scaling Out” on page 30 and “Network Topology and Hadoop” on page 70.
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Spark takes the first approach, starting a fixed number of executors on the cluster (see
“Spark on YARN” on page 571). MapReduce, on the other hand, has two phases: the map
task containers are requested up front, but the reduce task containers are not started
until later. Also, if any tasks fail, additional containers will be requested so the failed
tasks can be rerun.

Application Lifespan

Thelifespan ofa YARN application can vary dramatically: from a short-lived application
of a few seconds to along-running application that runs for days or even months. Rather
than look at how long the application runs for, it’s useful to categorize applications in
terms of how they map to the jobs that users run. The simplest case is one application
per user job, which is the approach that MapReduce takes.

The second model is to run one application per workflow or user session of (possibly
unrelated) jobs. This approach can be more efficient than the first, since containers can
be reused between jobs, and there is also the potential to cache intermediate data be-
tween jobs. Spark is an example that uses this model.

The third model is a long-running application that is shared by different users. Such an
application often acts in some kind of coordination role. For example, Apache Slider
has a long-running application master for launching other applications on the cluster.
Thisapproachisalso used by Impala (see “SQL-on-Hadoop Alternatives” on page 484) to
provide a proxy application that the Impala daemons communicate with to request
cluster resources. The “always on” application master means that users have very low-
latency responses to their queries since the overhead of starting a new application master
is avoided.?

Building YARN Applications

Writing a YARN application from scratch is fairly involved, but in many cases is not
necessary, as it is often possible to use an existing application that fits the bill. For ex-
ample, if you are interested in running a directed acyclic graph (DAG) of jobs, then
Spark or Tez is appropriate; or for stream processing, Spark, Samza, or Storm works.*

There are a couple of projects that simplify the process of building a YARN application.
Apache Slider, mentioned earlier, makes it possible to run existing distributed applica-
tions on YARN. Users can run their own instances of an application (such as HBase) on
a cluster, independently of other users, which means that different users can run dif-
ferent versions of the same application. Slider provides controls to change the number

3. The low-latency application master code lives in the Llama project.

4. All of these projects are Apache Software Foundation projects.
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of nodes an application is running on, and to suspend then resume a running
application.

Apache Twill is similar to Slider, but in addition provides a simple programming model
for developing distributed applications on YARN. Twill allows you to define cluster
processes as an extension of a Java Runnable, then runs them in YARN containers on
the cluster. Twill also provides support for, among other things, real-time logging (log
events from runnables are streamed back to the client) and command messages (sent
from the client to runnables).

In cases where none of these options are sufficient—such as an application that has
complex scheduling requirements—then the distributed shell application that is a part
of the YARN project itself serves as an example of how to write a YARN application. It
demonstrates how to use YARN’s client APIs to handle communication between the
client or application master and the YARN daemons.

YARN Compared to MapReduce 1

The distributed implementation of MapReduce in the original version of Hadoop (ver-
sion 1 and earlier) is sometimes referred to as “MapReduce 1” to distinguish it from
MapReduce 2, the implementation that uses YARN (in Hadoop 2 and later).

It's important to realize that the old and new MapReduce APIs are not
the same thing as the MapReduce 1 and MapReduce 2 implementa-
tions. The APIs are user-facing client-side features and determine
how you write MapReduce programs (see Appendix D), whereas the
implementations are just different ways of running MapReduce pro-
grams. All four combinations are supported: both the old and new
MapReduce APIs run on both MapReduce 1 and 2.

In MapReduce 1, there are two types of daemon that control the job execution process:
a jobtracker and one or more tasktrackers. The jobtracker coordinates all the jobs run
on the system by scheduling tasks to run on tasktrackers. Tasktrackers run tasks and
send progress reports to the jobtracker, which keeps a record of the overall progress of
each job. If a task fails, the jobtracker can reschedule it on a different tasktracker.

In MapReduce 1, the jobtracker takes care of both job scheduling (matching tasks with
tasktrackers) and task progress monitoring (keeping track of tasks, restarting failed or
slow tasks, and doing task bookkeeping, such as maintaining counter totals). By con-
trast, in YARN these responsibilities are handled by separate entities: the resource man-
ager and an application master (one for each MapReduce job). The jobtracker is also
responsible for storing job history for completed jobs, although it is possible to run a
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job history server as a separate daemon to take the load off the jobtracker. In YARN,
the equivalent role is the timeline server, which stores application history.’

The YARN equivalent of a tasktracker is a node manager. The mapping is summarized
in Table 4-1.

Table 4-1. A comparison of MapReduce 1 and YARN components

MapReduce 1 YARN

Jobtracker Resource manager, application master, timeline
server

Tasktracker Node manager

Slot Container

YARN was designed to address many of the limitations in MapReduce 1. The benefits
to using YARN include the following:

Scalability

YARN can run on larger clusters than MapReduce 1. MapReduce 1 hits scalability
bottlenecks in the region of 4,000 nodes and 40,000 tasks,® stemming from the fact
that the jobtracker has to manage both jobs and tasks. YARN overcomes these
limitations by virtue of its split resource manager/application master architecture:
it is designed to scale up to 10,000 nodes and 100,000 tasks.

In contrast to the jobtracker, each instance of an application—here, a MapReduce
job—has a dedicated application master, which runs for the duration of the appli-
cation. This model is actually closer to the original Google MapReduce paper, which
describes how a master process is started to coordinate map and reduce tasks run-
ning on a set of workers.

Availability

High availability (HA) is usually achieved by replicating the state needed for another
daemon to take over the work needed to provide the service, in the event of the
service daemon failing. However, the large amount of rapidly changing complex
state in the jobtracker’s memory (each task status is updated every few seconds, for
example) makes it very difficult to retrofit HA into the jobtracker service.

With the jobtracker’s responsibilities split between the resource manager and ap-
plication master in YARN, making the service highly available became a divide-
and-conquer problem: provide HA for the resource manager, then for YARN ap-
plications (on a per-application basis). And indeed, Hadoop 2 supports HA both

. As of Hadoop 2.5.1, the YARN timeline server does not yet store MapReduce job history, so a MapReduce

job history server daemon is still needed (see “Cluster Setup and Installation” on page 288).

6. Arun C. Murthy, “The Next Generation of Apache Hadoop MapReduce,” February 14, 2011.
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for the resource manager and for the application master for MapReduce jobs. Fail-
ure recovery in YARN is discussed in more detail in “Failures” on page 193.

Utilization
In MapReduce 1, each tasktracker is configured with a static allocation of fixed-size
“slots,” which are divided into map slots and reduce slots at configuration time. A
map slot can only be used to run a map task, and a reduce slot can only be used for
a reduce task.

In YARN, a node manager manages a pool of resources, rather than a fixed number
of designated slots. MapReduce running on YARN will not hit the situation where
a reduce task has to wait because only map slots are available on the cluster, which
can happen in MapReduce 1. If the resources to run the task are available, then the
application will be eligible for them.

Furthermore, resources in YARN are fine grained, so an application can make a
request for what it needs, rather than for an indivisible slot, which may be too big
(which is wasteful of resources) or too small (which may cause a failure) for the
particular task.

Multitenancy
In some ways, the biggest benefit of YARN is that it opens up Hadoop to other types
of distributed application beyond MapReduce. MapReduce is just one YARN ap-
plication among many.

It is even possible for users to run different versions of MapReduce on the same
YARN cluster, which makes the process of upgrading MapReduce more manage-
able. (Note, however, that some parts of MapReduce, such as the job history server
and the shuffle handler, as well as YARN itself, still need to be upgraded across the
cluster.)

Since Hadoop 2 is widely used and is the latest stable version, in the rest of this book
the term “MapReduce” refers to MapReduce 2 unless otherwise stated. Chapter 7 looks
in detail at how MapReduce running on YARN works.

Scheduling in YARN

In an ideal world, the requests that a YARN application makes would be granted im-
mediately. In the real world, however, resources are limited, and on a busy cluster, an
application will often need to wait to have some of its requests fulfilled. It is the job of
the YARN scheduler to allocate resources to applications according to some defined
policy. Scheduling in general is a difficult problem and there is no one “best” policy,
which is why YARN provides a choice of schedulers and configurable policies. We look
at these next.
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Scheduler Options

Three schedulers are available in YARN: the FIFO, Capacity, and Fair Schedulers. The
FIFO Scheduler places applications in a queue and runs them in the order of submission
(firstin, first out). Requests for the first application in the queue are allocated first; once
its requests have been satisfied, the next application in the queue is served, and so on.

The FIFO Scheduler has the merit of being simple to understand and not needing any
configuration, but it’s not suitable for shared clusters. Large applications will use all the
resources in a cluster, so each application has to wait its turn. On a shared cluster it is
better to use the Capacity Scheduler or the Fair Scheduler. Both of these allow long-
running jobs to complete in a timely manner, while still allowing users who are running
concurrent smaller ad hoc queries to get results back in a reasonable time.

The difference between schedulers is illustrated in Figure 4-3, which shows that under
the FIFO Scheduler (i) the small job is blocked until the large job completes.

With the Capacity Scheduler (ii in Figure 4-3), a separate dedicated queue allows the
small job to start as soon as it is submitted, although this is at the cost of overall cluster
utilization since the queue capacity is reserved for jobs in that queue. This means that
the large job finishes later than when using the FIFO Scheduler.

With the Fair Scheduler (iii in Figure 4-3), there is no need to reserve a set amount of
capacity, since it will dynamically balance resources between all running jobs. Just after
the first (large) job starts, it is the only job running, so it gets all the resources in the
cluster. When the second (small) job starts, it is allocated half of the cluster resources
so that each job is using its fair share of resources.

Note that there is a lag between the time the second job starts and when it receives its
fair share, since it has to wait for resources to free up as containers used by the first job
complete. After the small job completes and no longer requires resources, the large job
goes back to using the full cluster capacity again. The overall effect is both high cluster
utilization and timely small job completion.

Figure 4-3 contrasts the basic operation of the three schedulers. In the next two sections,
we examine some of the more advanced configuration options for the Capacity and Fair
Schedulers.

86 | Chapter4:YARN



i. FIFO Scheduler

utilization
A

FIFO queue

job1 job2
submitted submitted
ii. Capacity Scheduler

utilization
A

» time

queue B

queue A

job1 job2
submitted  submitted
iiii. Fair Scheduler

utilization
y N

» time

fair share
pool/queue

job1 job2
submitted  submitted

» time

Figure 4-3. Cluster utilization over time when running a large job and a small job un-
der the FIFO Scheduler (i), Capacity Scheduler (ii), and Fair Scheduler (iii)
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Capacity Scheduler Configuration

The Capacity Scheduler allows sharing of a Hadoop cluster along organizational lines,
whereby each organization is allocated a certain capacity of the overall cluster. Each
organization is set up with a dedicated queue that is configured to use a given fraction
of the cluster capacity. Queues may be further divided in hierarchical fashion, allowing
each organization to share its cluster allowance between different groups of users within
the organization. Within a queue, applications are scheduled using FIFO scheduling.

As we saw in Figure 4-3, a single job does not use more resources than its queue’s
capacity. However, if there is more than one job in the queue and there are idle resources
available, then the Capacity Scheduler may allocate the spare resources to jobs in the
queue, even if that causes the queue’s capacity to be exceeded.” This behavior is known
as queue elasticity.

In normal operation, the Capacity Scheduler does not preempt containers by forcibly
killing them,® so if a queue is under capacity due to lack of demand, and then demand
increases, the queue will only return to capacity as resources are released from other
queues as containers complete. It is possible to mitigate this by configuring queues with
a maximum capacity so that they don’t eat into other queues’ capacities too much. This
is at the cost of queue elasticity, of course, so a reasonable trade-off should be found by
trial and error.

Imagine a queue hierarchy that looks like this:

root

}— prod

L— dev

— eng

L— science
The listing in Example 4-1 shows a sample Capacity Scheduler configuration file, called
capacity-scheduler.xml, for this hierarchy. It defines two queues under the root queue,
prod and dev, which have 40% and 60% of the capacity, respectively. Notice that a par-
ticular queue is configured by setting configuration properties of the form
yarn.scheduler.capacity.<queue-path>.<sub-property>, where <queue-path> is
the hierarchical (dotted) path of the queue, such as root.prod.

7. If the property yarn.scheduler.capacity.<queue-path>.user-limit-factor is set to a value larger
than 1 (the default), then a single job is allowed to use more than its queue’s capacity.

8. However, the Capacity Scheduler can perform work-preserving preemption, where the resource manager
asks applications to return containers to balance capacity.
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Example 4-1. A basic configuration file for the Capacity Scheduler

<?xml version="1.0"?>
<configuration>
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>prod,dev</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.dev.queues</name>
<value>eng,science</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.prod.capacity</name>
<value>40</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.dev.capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.dev.maximum-capacity</name>
<value>75</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.dev.eng.capacity</name>
<value>50</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.dev.science.capacity</name>
<value>50</value>
</property>
</configuration>

As you can see, the dev queue is further divided into eng and science queues of equal
capacity. So that the dev queue does not use up all the cluster resources when the prod
queue is idle, it has its maximum capacity set to 75%. In other words, the prod queue
always has 25% of the cluster available for immediate use. Since no maximum capacities
have been set for other queues, it’s possible for jobs in the eng or science queues to use
all of the dev queue’s capacity (up to 75% of the cluster), or indeed for the prod queue
to use the entire cluster.

Beyond configuring queue hierarchies and capacities, there are settings to control the
maximum number of resources a single user or application can be allocated, how many
applications can be running at any one time, and ACLs on queues. See the reference
page for details.
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Queue placement

The way that you specify which queue an application is placed in is specific to the
application. For example, in MapReduce, you set the property mapreduce. job.queue
name to the name of the queue you want to use. If the queue does not exist, then you’ll
get an error at submission time. If no queue is specified, applications will be placed in
a queue called default.

For the Capacity Scheduler, the queue name should be the last part

of the hierarchical name since the full hierarchical name is not rec-

ognized. So, for the preceding example configuration, prod and eng
\ are OK, but root.dev.eng and dev.eng do not work.

Fair Scheduler Configuration

The Fair Scheduler attempts to allocate resources so that all running applications get
the same share of resources. Figure 4-3 showed how fair sharing works for applications
in the same queue; however, fair sharing actually works between queues, too, as we’ll
see next.

The terms queue and pool are used interchangeably in the context of
the Fair Scheduler.

To understand how resources are shared between queues, imagine two users A and B,
each with their own queue (Figure 4-4). A starts a job, and it is allocated all the resources
available since there is no demand from B. Then B starts a job while A’s job is still
running, and after a while each job is using half of the resources, in the way we saw
earlier. Now if B starts a second job while the other jobs are still running, it will share
its resources with B’s other job, so each of B’s jobs will have one-fourth of the resources,
while A’s will continue to have half. The result is that resources are shared fairly between
users.
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Figure 4-4. Fair sharing between user queues

Enabling the Fair Scheduler

The scheduler in use is determined by the setting of yarn.resourcemanager.schedu
ler.class. The Capacity Scheduler is used by default (although the Fair Scheduler is
the default in some Hadoop distributions, such as CDH), but this can be changed by
setting yarn.resourcemanager.scheduler.class in yarn-site.xml to the fully qualified
classname of the scheduler, org.apache.hadoop.yarn.server.resourcemanag
er.scheduler.fair.FairScheduler.

Queue configuration

The Fair Scheduler is configured using an allocation file named fair-scheduler.xml that
is loaded from the classpath. (The name can be changed by setting the property
yarn.scheduler.fair.allocation.file.) In the absence of an allocation file, the Fair
Scheduler operates as described earlier: each application is placed in a queue named
after the user and queues are created dynamically when users submit their first appli-
cations.

Per-queue configuration is specified in the allocation file. This allows configuration of
hierarchical queues like those supported by the Capacity Scheduler. For example, we
can define prod and dev queues like we did for the Capacity Scheduler using the allo-
cation file in Example 4-2.

Example 4-2. An allocation file for the Fair Scheduler

<?xml version="1.0"?>
<allocations>
<defaultQueueSchedulingPolicy>fair</defaultQueueSchedulingPolicy>

<queue name="prod">
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<weight>40</weight>
<schedulingPolicy>fifo</schedulingPolicy>
</queue>

<queue name="dev'">
<weight>60</weight>
<queue name="eng" />
<queue name="science" [>
</queue>

<queuePlacementPolicy>
<rule name="specified" create="false" />
<rule name="primaryGroup" create="false" />
<rule name="default" queue="dev.eng" />
</queuePlacementPolicy>
</allocations>

The queue hierarchy is defined using nested queue elements. All queues are children of
the root queue, even if not actually nested in a root queue element. Here we subdivide
the dev queue into a queue called eng and another called science.

Queues can have weights, which are used in the fair share calculation. In this example,
the cluster allocation is considered fair when it is divided into a 40:60 proportion be-
tween prod and dev. The eng and science queues do not have weights specified, so they
are divided evenly. Weights are not quite the same as percentages, even though the
example uses numbers that add up to 100 for the sake of simplicity. We could have
specified weights of 2 and 3 for the prod and dev queues to achieve the same queue
weighting.

When setting weights, remember to consider the default queue and
dynamically created queues (such as queues named after users). These
are not specified in the allocation file, but still have weight 1.

Queues can have different scheduling policies. The default policy for queues can be set
in the top-level defaultQueueSchedulingPolicy element; if it is omitted, fair sched-
uling is used. Despite its name, the Fair Scheduler also supports a FIFO (fifo) policy
on queues, as well as Dominant Resource Fairness (drf), described later in the chapter.

The policy for a particular queue can be overridden using the schedulingPolicy ele-
ment for that queue. In this case, the prod queue uses FIFO scheduling since we want
each production job to run serially and complete in the shortest possible amount of
time. Note that fair sharing is still used to divide resources between the prod and dev
queues, as well as between (and within) the eng and science queues.
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Although not shown in this allocation file, queues can be configured with minimum
and maximum resources, and a maximum number of running applications. (See the
reference page for details.) The minimum resources setting is not a hard limit, but rather
is used by the scheduler to prioritize resource allocations. If two queues are below their
fair share, then the one that is furthest below its minimum is allocated resources first.
The minimum resource setting is also used for preemption, discussed momentarily.

Queue placement

The Fair Scheduler uses a rules-based system to determine which queue an application
is placed in. In Example 4-2, the queuePlacementPolicy element contains a list of rules,
each of which is tried in turn until a match occurs. The first rule, specified, places an
application in the queue it specified; if none is specified, or if the specified queue doesn’t
exist, then the rule doesn’t match and the next rule is tried. The primaryGroup rule tries
to place an application in a queue with the name of the user’s primary Unix group; if
there is no such queue, rather than creating it, the next rule is tried. The default rule
is a catch-all and always places the application in the dev.eng queue.

The queuePlacementPolicy can be omitted entirely, in which case the default behavior
is as if it had been specified with the following:

<queuePlacementPolicy>
<rule name="specified" />
<rule name="user" [>

</queuePlacementPolicy>

In other words, unless the queue is explicitly specified, the user’s name is used for the
queue, creating it if necessary.

Another simple queue placement policy is one where all applications are placed in the
same (default) queue. This allows resources to be shared fairly between applications,
rather than users. The definition is equivalent to this:

<queuePlacementPolicy>
<rule name="default" />
</queuePlacementPolicy>

Its also possible to set this policy without using an allocation file, by setting
yarn.scheduler.fair.user-as-default-queue to false so that applications will be
placed in the default queue rather than a per-user queue. In addition,
yarn.scheduler.fair.allow-undeclared-pools should be set to false so that users
can’t create queues on the fly.

Preemption

When a job is submitted to an empty queue on a busy cluster, the job cannot start until
resources free up from jobs that are already running on the cluster. To make the time
taken for a job to start more predictable, the Fair Scheduler supports preemption.
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Preemption allows the scheduler to kill containers for queues that are running with
more than their fair share of resources so that the resources can be allocated to a queue
that is under its fair share. Note that preemption reduces overall cluster efficiency, since
the terminated containers need to be reexecuted.

Preemption is enabled globally by setting yarn.scheduler.fair.preemption to true.
There are two relevant preemption timeout settings: one for minimum share and one
for fair share, both specified in seconds. By default, the timeouts are not set, so you need
to set at least one to allow containers to be preempted.

If a queue waits for as long as its minimum share preemption timeout without receiving
its minimum guaranteed share, then the scheduler may preempt other containers. The
default timeout is set for all queues via the defaultMinSharePreemptionTimeout top-
level element in the allocation file, and on a per-queue basis by setting the minShare
PreemptionTimeout element for a queue.

Likewise, if a queue remains below half of its fair share for as long as the fair share
preemption timeout, then the scheduler may preempt other containers. The default
timeout is set for all queues via the defaultFairSharePreemptionTimeout top-level
element in the allocation file, and on a per-queue basis by setting fatirSharePreemp
tionTimeout on a queue. The threshold may also be changed from its default of 0.5 by
setting defaultFairSharePreemptionThreshold and fairSharePreemptionThres

hold (per-queue).

Delay Scheduling

All the YARN schedulers try to honor locality requests. On a busy cluster, if an appli-
cation requests a particular node, there is a good chance that other containers are run-
ning on it at the time of the request. The obvious course of action is to immediately
loosen the locality requirement and allocate a container on the same rack. However, it
has been observed in practice that waiting a short time (no more than a few seconds)
can dramatically increase the chances of being allocated a container on the requested
node, and therefore increase the efficiency of the cluster. This feature is called delay
scheduling, and it is supported by both the Capacity Scheduler and the Fair Scheduler.

Every node manager in a YARN cluster periodically sends a heartbeat request to the
resource manager—by default, one per second. Heartbeats carry information about the
node manager’s running containers and the resources available for new containers, so
each heartbeat is a potential scheduling opportunity for an application to run a container.

When using delay scheduling, the scheduler doesn’t simply use the first scheduling
opportunity it receives, but waits for up to a given maximum number of scheduling
opportunities to occur before loosening the locality constraint and taking the next
scheduling opportunity.
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For the Capacity Scheduler, delay scheduling is configured by setting
yarn.scheduler.capacity.node-locality-delay to a positive integer representing
the number of scheduling opportunities that it is prepared to miss before loosening the
node constraint to match any node in the same rack.

The Fair Scheduler also uses the number of scheduling opportunities to determine the
delay, although it is expressed as a proportion of the cluster size. For example, setting
yarn.scheduler.fair.locality.threshold.node to 0.5 means that the scheduler
should wait until half of the nodes in the cluster have presented scheduling opportunities
before accepting another node in the same rack. There is a corresponding property,
yarn.scheduler.fatir.locality.threshold.rack, for setting the threshold before
another rack is accepted instead of the one requested.

Dominant Resource Fairness

When there is only a single resource type being scheduled, such as memory, then the
concept of capacity or fairness is easy to determine. If two users are running applications,
you can measure the amount of memory that each is using to compare the two appli-
cations. However, when there are multiple resource types in play, things get more com-
plicated. If one user’s application requires lots of CPU but little memory and the other’s
requires little CPU and lots of memory, how are these two applications compared?

The way that the schedulers in YARN address this problem is to look at each user’s
dominant resource and use it as a measure of the cluster usage. This approach is called
Dominant Resource Fairness, or DRF for short.” The idea is best illustrated with a simple
example.

Imagine a cluster with a total of 100 CPUs and 10 TB of memory. Application A requests
containers of (2 CPUs, 300 GB), and application B requests containers of (6 CPUs, 100
GB). A’s request is (2%, 3%) of the cluster, so memory is dominant since its proportion
(3%) is larger than CPU’s (2%). B’s request is (6%, 1%), so CPU is dominant. Since B’s
container requests are twice as big in the dominant resource (6% versus 3%), it will be
allocated half as many containers under fair sharing.

By default DRF is not used, so during resource calculations, only memory is considered
and CPU is ignored. The Capacity Scheduler can be configured to use DRF by setting
yarn.scheduler.capacity.resource-calculator to org.apache.hadoop.yarn
.util.resource.DominantResourceCalculator in capacity-scheduler.xml.

For the Fair Scheduler, DRF can be enabled by setting the top-level element default
QueueSchedulingPolicy in the allocation file to drf.

9. DRF was introduced in Ghodsi et al’s “Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types,” March 2011.
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Further Reading

This chapter has given a short overview of YARN. For more detail, see Apache Hadoop
YARN by Arun C. Murthy et al. (Addison-Wesley, 2014).
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CHAPTER 5
Hadoop 1/0

Hadoop comes with a set of primitives for data I/O. Some of these are techniques that
are more general than Hadoop, such as data integrity and compression, but deserve
special consideration when dealing with multiterabyte datasets. Others are Hadoop
tools or APIs that form the building blocks for developing distributed systems, such as
serialization frameworks and on-disk data structures.

Data Integrity

Users of Hadoop rightly expect that no data will be lost or corrupted during storage or
processing. However, because every I/O operation on the disk or network carries with
it a small chance of introducing errors into the data that it is reading or writing, when
the volumes of data flowing through the system are as large as the ones Hadoop is capable
of handling, the chance of data corruption occurring is high.

The usual way of detecting corrupted data is by computing a checksum for the data when
it first enters the system, and again whenever it is transmitted across a channel that is
unreliable and hence capable of corrupting the data. The data is deemed to be corrupt
if the newly generated checksum doesn’t exactly match the original. This technique
doesn't offer any way to fix the data—it is merely error detection. (And this is a reason
for not using low-end hardware; in particular, be sure to use ECC memory.) Note that
it is possible that it’s the checksum that is corrupt, not the data, but this is very unlikely,
because the checksum is much smaller than the data.

A commonly used error-detecting code is CRC-32 (32-bit cyclic redundancy check),
which computes a 32-bit integer checksum for input of any size. CRC-32 is used for
checksumming in Hadoop’s ChecksumFileSystem, while HDFS uses a more efficient
variant called CRC-32C.
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Data Integrity in HDFS

HDFS transparently checksums all data written to it and by default verifies checksums
when reading data. A separate checksum is created for every dfs.bytes-per-
checksum bytes of data. The default is 512 bytes, and because a CRC-32C checksum is
4 bytes long, the storage overhead is less than 1%.

Datanodes are responsible for verifying the data they receive before storing the data and
its checksum. This applies to data that they receive from clients and from other
datanodes during replication. A client writing data sends it to a pipeline of datanodes
(as explained in Chapter 3), and the last datanode in the pipeline verifies the checksum.
If the datanode detects an error, the client receives a subclass of IOException, which it
should handle in an application-specific manner (for example, by retrying the opera-
tion).

When clients read data from datanodes, they verify checksums as well, comparing them
with the ones stored at the datanodes. Each datanode keeps a persistent log of checksum
verifications, so it knows the last time each of its blocks was verified. When a client
successfully verifies a block, it tells the datanode, which updates its log. Keeping statistics
such as these is valuable in detecting bad disks.

In addition to block verification on client reads, each datanode runs a DataBlockScan
ner in a background thread that periodically verifies all the blocks stored on the data-
node. This is to guard against corruption due to “bit rot” in the physical storage media.
See “Datanode block scanner” on page 328 for details on how to access the scanner
reports.

Because HDEFS stores replicas of blocks, it can “heal” corrupted blocks by copying one
of the good replicas to produce a new, uncorrupt replica. The way this works is that if
a client detects an error when reading a block, it reports the bad block and the datanode
it was trying to read from to the namenode before throwing a ChecksumException. The
namenode marks the block replica as corrupt so it doesn’t direct any more clients to it
or try to copy this replica to another datanode. It then schedules a copy of the block to
be replicated on another datanode, so its replication factor is back at the expected level.
Once this has happened, the corrupt replica is deleted.

It is possible to disable verification of checksums by passing false to the setVerify
Checksum() method on FileSystem before using the open() method to read a file. The
same effect is possible from the shell by using the -ignoreCrc option with the -get or
the equivalent -copyToLocal command. This feature is useful if you have a corrupt file
that you want to inspect so you can decide what to do with it. For example, you might
want to see whether it can be salvaged before you delete it.

You can find a file’s checksum with hadoop fs -checksum. This is useful to check
whether two files in HDFS have the same contents—something that distcp does, for
example (see “Parallel Copying with distcp” on page 76).
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LocalFileSystem

The Hadoop LocalFileSystem performs client-side checksumming. This means that
when you write a file called filename, the filesystem client transparently creates a hidden
file, .filename.crc, in the same directory containing the checksums for each chunk of the
file. The chunk size is controlled by the file.bytes-per-checksum property, which
defaults to 512 bytes. The chunk size is stored as metadata in the .crc file, so the file can
be read back correctly even if the setting for the chunk size has changed. Checksums
are verified when the file is read, and if an error is detected, LocalFileSystem throws
a ChecksumException.

Checksums are fairly cheap to compute (in Java, they are implemented in native code),
typically adding a few percent overhead to the time to read or write a file. For most
applications, this is an acceptable price to pay for data integrity. It is, however, possible
to disable checksums, which is typically done when the underlying filesystem supports
checksums natively. This is accomplished by using RawLocalFileSystem in place of
LocalFileSystenm. To do this globally in an application, it suffices to remap the imple-
mentation for file URIs by setting the property fs.file.impl to the value
org.apache.hadoop.fs.RawLocalFileSystem. Alternatively, you can directly create a
RawLocalFileSystem instance, which may be useful if you want to disable checksum
verification for only some reads, for example:

Configuration conf = ...
FileSystem fs = new RawLocalFileSystem();
fs.initialize(null, conf);

ChecksumFileSystem

LocalFileSystem uses ChecksumFileSystem to do its work, and this class makes it easy
to add checksumming to other (nonchecksummed) filesystems, as Checksum
FileSystenm is just a wrapper around FileSystem. The general idiom is as follows:

FileSystem rawFs = ...
FileSystem checksummedFs = new ChecksumFileSystem(rawFs);

The underlying filesystem is called the raw filesystem, and may be retrieved using the
getRawFileSystem() method on ChecksumFileSystem. ChecksumFileSystemhasafew
more useful methods for working with checksums, such as getChecksumFile() for
getting the path of a checksum file for any file. Check the documentation for the others.

If an error is detected by ChecksumFileSystem when reading a file, it will call its
reportChecksumFailure() method. The default implementation does nothing, but
LocalFileSystem moves the offending file and its checksum to a side directory on the
same device called bad_files. Administrators should periodically check for these bad
files and take action on them.
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Compression

File compression brings two major benefits: it reduces the space needed to store files,
and it speeds up data transfer across the network or to or from disk. When dealing with
large volumes of data, both of these savings can be significant, so it pays to carefully
consider how to use compression in Hadoop.

There are many different compression formats, tools, and algorithms, each with dif-
ferent characteristics. Table 5-1 lists some of the more common ones that can be used
with Hadoop.

Table 5-1. A summary of compression formats

Compression format Tool Algorithm Filename extension  Splittable?
DEFLATE? N/A DEFLATE .deflate No
gzip gzip DEFLATE .8z No
bzip2 bzip2 bzip2 .bz2 Yes
LZ0 lzop L20 dzo Nob
Lz4 N/A Lz4 dz4 No
Snappy N/A Snappy .snappy No

3 DEFLATE is a compression algorithm whose standard implementation is zlib. There is no commonly available command-line tool
for producing files in DEFLATE format, as gzip is normally used. (Note that the gzip file format is DEFLATE with extra headers and
a footer.) The .deflate filename extension is a Hadoop convention.

b However, LZ0 files are splittable if they have been indexed in a preprocessing step. See “Compression and Input Splits” on page
105.

All compression algorithms exhibit a space/time trade-off: faster compression and de-
compression speeds usually come at the expense of smaller space savings. The tools
listed in Table 5-1 typically give some control over this trade-off at compression time
by offering nine different options: -1 means optimize for speed, and -9 means optimize
for space. For example, the following command creates a compressed file file.gz using
the fastest compression method:

% gzip -1 file

The different tools have very different compression characteristics. gzip is a general-
purpose compressor and sits in the middle of the space/time trade-off. bzip2 compresses
more effectively than gzip, but is slower. bzip2’s decompression speed is faster than its
compression speed, but it is still slower than the other formats. LZO, LZ4, and Snappy,
on the other hand, all optimize for speed and are around an order of magnitude faster
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than gzip, but compress less effectively. Snappy and LZ4 are also significantly faster than
LZO for decompression.'

The “Splittable” column in Table 5-1 indicates whether the compression format supports
splitting (that is, whether you can seek to any point in the stream and start reading from
some point further on). Splittable compression formats are especially suitable for Map-
Reduce; see “Compression and Input Splits” on page 105 for further discussion.

Codecs

A codec is the implementation of a compression-decompression algorithm. In Hadoop,
a codec is represented by an implementation of the CompressionCodec interface. So, for
example, GzipCodec encapsulates the compression and decompression algorithm for
gzip. Table 5-2 lists the codecs that are available for Hadoop.

Table 5-2. Hadoop compression codecs

Compression format Hadoop CompressionCodec

DEFLATE org.apache.hadoop.10.compress.DefaultCodec
gzip org.apache.hadoop.10.compress.GzipCodec
bzip2 org.apache.hadoop.10.compress.BZip2Codec
L0 com.hadoop.compression.lzo.LzopCodec

L74 org.apache.hadoop.io.compress.Lz4Codec
Snappy org.apache.hadoop.10.compress.SnappyCodec

The LZO libraries are GPL licensed and may not be included in Apache distributions,
so for this reason the Hadoop codecs must be downloaded separately from Google (or
GitHub, which includes bug fixes and more tools). The LzopCodec, which is compatible
with the Izop tool, is essentially the LZO format with extra headers, and is the one you
normally want. There is also an LzoCodec for the pure LZO format, which uses
the .Izo_deflate filename extension (by analogy with DEFLATE, which is gzip without
the headers).

Compressing and decompressing streams with CompressionCodec

CompressionCodec has two methods that allow you to easily compress or decompress
data. To compress data being written to an output stream, use the createOutput
Stream(OutputStream out) method to create a CompressionOutputStream to which
you write your uncompressed data to have it written in compressed form to the
underlying stream. Conversely, to decompress data being read from an input stream,

1. For a comprehensive set of compression benchmarks, jvm-compressor-benchmark is a good reference for
JVM-compatible libraries (including some native libraries).
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call createInputStream(InputStream 1in) to obtain a CompressionInputStream,
which allows you to read uncompressed data from the underlying stream.

CompressionOutputStream and CompressionInputStream are similar to java.util.
zip.DeflaterOutputStream and java.util.zip.DeflaterInputStream, except that
both of the former provide the ability to reset their underlying compressor or decom-
pressor. This is important for applications that compress sections of the data stream as
separate blocks, such as in a SequenceFile, described in “SequenceFile” on page 127.

Example 5-1 illustrates how to use the API to compress data read from standard input
and write it to standard output.

Example 5-1. A program to compress data read from standard input and write it to
standard output

public class StreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newInstance(codecClass, conf);

CompressionOutputStream out = codec.createOutputStream(System.out);
I0Utils.copyBytes(System.in, out, 4096, false);
out.finish();
}
}

The application expects the fully qualified name of the CompressionCodec implemen-
tation as the first command-line argument. We use ReflectionUtils to construct a
new instance of the codec, then obtain a compression wrapper around System.out.
Then we call the utility method copyBytes() on I0Ut1i1s to copy the input to the output,
which is compressed by the CompressionOutputStream. Finally, we call finish() on
CompressionOutputStream, which tells the compressor to finish writing to the com-
pressed stream, but doesn’t close the stream. We can try it out with the following com-
mand line, which compresses the string “Text” using the StreamCompressor program
with the GzipCodec, then decompresses it from standard input using gunzip:

% echo "Text" | hadoop StreamCompressor org.apache.hadoop.io.compress.GzipCodec \
| gunzip -
Text

Inferring CompressionCodecs using CompressionCodecFactory

If you are reading a compressed file, normally you can infer which codec to use by
looking at its filename extension. A file ending in .gz can be read with GzipCodec, and
so on. The extensions for each compression format are listed in Table 5-1.
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CompressionCodecFactory provides a way of mapping a filename extension to a
CompressionCodec using its getCodec() method, which takes a Path object for the file
in question. Example 5-2 shows an application that uses this feature to decompress files.

Example 5-2. A program to decompress a compressed file using a codec inferred from
the file’s extension

public class FileDecompressor {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

Path inputPath = new Path(uri);

CompressionCodecFactory factory = new CompressionCodecFactory(conf);

CompressionCodec codec = factory.getCodec(inputPath);

if (codec == null) {
System.err.println("No codec found for
System.exit(1);

}

+uri);

String outputUri =
CompressionCodecFactory.removeSuffix(uri, codec.getDefaultExtension());

InputStream in = null;

OutputStream out = null;

try {
in = codec.createInputStream(fs.open(inputPath));
out = fs.create(new Path(outputUri));
I0Utils.copyBytes(in, out, conf);

} finally {
I0Utils.closeStream(in);
I0Utils.closeStream(out);

}

}
}

Once the codec has been found, it is used to strip off the file suffix to form the output
filename (via the removeSuffix() static method of CompressionCodecFactory). In this
way, a file named file.gz is decompressed to file by invoking the program as follows:

% hadoop FileDecompressor file.gz

CompressionCodecFactory loads all the codecs in Table 5-2, except LZO, as well as any
listed in the io0.compression.codecs configuration property (Table 5-3). By default,
the property is empty; you would need to alter it only if you have a custom codec that
you wish to register (such as the externally hosted LZO codecs). Each codec knows its
default filename extension, thus permitting CompressionCodecFactory to search
through the registered codecs to find a match for the given extension (if any).
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Table 5-3. Compression codec properties

Property name Type Default Description
value
i0.compression.codecs (omma-separated Class Alist of additional CompressionCodec
names classes for compression/decompression

Native libraries

For performance, it is preferable to use a native library for compression and
decompression. For example, in one test, using the native gzip libraries reduced de-
compression times by up to 50% and compression times by around 10% (compared to
the built-in Java implementation). Table 5-4 shows the availability of Java and native
implementations for each compression format. All formats have native implementa-
tions, but not all have a Java implementation (LZO, for example).

Table 5-4. Compression library implementations

Compression format Java implementation? Native implementation?

DEFLATE Yes Yes
qgzip Yes Yes
bzip2 Yes Yes
120 No Yes
L74 No Yes
Snappy No Yes

The Apache Hadoop binary tarball comes with prebuilt native compression binaries for
64-bit Linux, called libhadoop.so. For other platforms, you will need to compile the
libraries yourself, following the BUILDING.txt instructions at the top level of the source
tree.

The native libraries are picked up using the Java system property java.library.path.
The hadoop script in the etc/hadoop directory sets this property for you, but if you don't
use this script, you will need to set the property in your application.

By default, Hadoop looks for native libraries for the platform it is running on, and loads
them automatically if they are found. This means you don’t have to change any config-
uration settings to use the native libraries. In some circumstances, however, you may
wish to disable use of native libraries, such as when you are debugging a compression-
related problem. You can do this by setting the property to.native.lib.available to
false, which ensures that the built-in Java equivalents will be used (if they are available).

CodecPool. If you are using a native library and you are doing a lot of compression or
decompression in your application, consider using CodecPool, which allows you to
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reuse compressors and decompressors, thereby amortizing the cost of creating these
objects.

The code in Example 5-3 shows the API, although in this program, which creates only
a single Compressor, there is really no need to use a pool.

Example 5-3. A program to compress data read from standard input and write it to
standard output using a pooled compressor

public class PooledStreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newInstance(codecClass, conf);
Compressor compressor = null;

try {
compressor = CodecPool.getCompressor(codec);

CompressionOQutputStream out =
codec.createOutputStream(System.out, compressor);

I0Utils.copyBytes(System.in, out, 4096, false);
out.finish();

} finally {
CodecPool.returnCompressor(compressor);

}

}
}

We retrieve a Compressor instance from the pool for a given CompressionCodec, which
we use in the codec’s overloaded createOutputStream() method. By using a finally
block, we ensure that the compressor is returned to the pool even if there is an
IO0Exception while copying the bytes between the streams.

Compression and Input Splits

When considering how to compress data that will be processed by MapReduce, it is
important to understand whether the compression format supports splitting. Consider
an uncompressed file stored in HDFS whose size is 1 GB. With an HDFES block size of
128 MB, the file will be stored as eight blocks, and a MapReduce job using this file as
input will create eight input splits, each processed independently as input to a separate
map task.

Imagine now that the file is a gzip-compressed file whose compressed size is 1 GB. As
before, HDFS will store the file as eight blocks. However, creating a split for each block
won't work, because it is impossible to start reading at an arbitrary point in the gzip
stream and therefore impossible for a map task to read its split independently of the
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others. The gzip format uses DEFLATE to store the compressed data, and DEFLATE
stores data as a series of compressed blocks. The problem is that the start of each block
is not distinguished in any way that would allow a reader positioned at an arbitrary
pointin the stream to advance to the beginning of the next block, thereby synchronizing
itself with the stream. For this reason, gzip does not support splitting.

In this case, MapReduce will do the right thing and not try to split the gzipped file, since
it knows that the input is gzip-compressed (by looking at the filename extension) and
that gzip does not support splitting. This will work, but at the expense of locality: a single
map will process the eight HDFS blocks, most of which will not be local to the map.
Also, with fewer maps, the job is less granular and so may take longer to run.

Ifthe file in our hypothetical example were an LZO file, we would have the same problem
because the underlying compression format does not provide a way for a reader to
synchronize itself with the stream. However, it is possible to preprocess LZO files using
an indexer tool that comes with the Hadoop LZO libraries, which you can obtain from
the Google and GitHub sites listed in “Codecs” on page 101. The tool builds an index
of split points, effectively making them splittable when the appropriate MapReduce
input format is used.

A bzip2 file, on the other hand, does provide a synchronization marker between blocks
(a 48-bit approximation of pi), so it does support splitting. (Table 5-1 lists whether each
compression format supports splitting.)

Which Compression Format Should | Use?

Hadoop applications process large datasets, so you should strive to take advantage of
compression. Which compression format you use depends on such considerations as
file size, format, and the tools you are using for processing. Here are some suggestions,
arranged roughly in order of most to least effective:

« Usea container file format such as sequence files (see the section on page 127), Avro
datafiles (see the section on page 352), ORCFiles (see the section on page 136),
or Parquet files (see the section on page 370), all of which support both compression
and splitting. A fast compressor such as LZO, LZ4, or Snappy is generally a good
choice.

« Use a compression format that supports splitting, such as bzip2 (although bzip2 is
fairly slow), or one that can be indexed to support splitting, such as LZO.

o Split the file into chunks in the application, and compress each chunk separately
using any supported compression format (it doesn’t matter whether it is splittable).
In this case, you should choose the chunk size so that the compressed chunks are
approximately the size of an HDFS block.
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« Store the files uncompressed.

For large files, you should not use a compression format that does not support splitting
on the whole file, because you lose locality and make MapReduce applications very
inefficient.

Using Compression in MapReduce

As described in “Inferring CompressionCodecs using CompressionCodecFactory” on
page 102, if your input files are compressed, they will be decompressed automatically
as they are read by MapReduce, using the filename extension to determine which codec
to use.

In order to compress the output of a MapReduce job, in the job configuration, set the
mapreduce.output.fileoutputformat.compress property to true and set the mapre
duce.output.fileoutputformat.compress.codec property to the classname of the
compression codec you want to use. Alternatively, you can use the static convenience
methods on FileOutputFormat to set these properties, as shown in Example 5-4.

Example 5-4. Application to run the maximum temperature job producing compressed
output

public class MaxTemperatureWithCompression {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCompression <input path> " +
"<output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(MaxTemperature.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);
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3
}

We run the program over compressed input (which doesn’t have to use the same com-
pression format as the output, although it does in this example) as follows:

% hadoop MaxTemperatureWithCompression input/ncdc/sample.txt.gz output
Each part of the final output is compressed; in this case, there is a single part:

% gunzip -c output/part-r-00000.g9z
1949 111
1950 22

If you are emitting sequence files for your output, you can set the mapreduce.out
put.fileoutputformat.compress.type property to control the type of compression
to use. The default is RECORD, which compresses individual records. Changing this to
BLOCK, which compresses groups of records, is recommended because it compresses
better (see “The SequenceFile format” on page 133).

There is also a static convenience method on SequenceFileOutputFormat called
setOutputCompressionType() to set this property.

The configuration properties to set compression for MapReduce job outputs are sum-
marized in Table 5-5. If your MapReduce driver uses the Tool interface (described in
“GenericOptionsParser, Tool, and ToolRunner” on page 148), you can pass any of these
properties to the program on the command line, which may be more convenient than
modifying your program to hardcode the compression properties.

Table 5-5. MapReduce compression properties

Property name Type Default value Description
mapreduce.output.fileoutput boolean false Whether to
format.compress compress outputs
mapreduce.output.fileoutput Class org.apache.hadoop.10.com The compression
format.compress.codec name press.DefaultCodec codec to use for
outputs
mapreduce.output.fileoutput String RECORD The type of
format.compress.type compression to use

for sequence file
outputs: NONE,
RECORD, or
BLOCK

Compressing map output

Even if your MapReduce application reads and writes uncompressed data, it may benefit
from compressing the intermediate output of the map phase. The map output is written
to disk and transferred across the network to the reducer nodes, so by using a fast
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compressor such as LZO, LZ4, or Snappy, you can get performance gains simply because
the volume of data to transfer is reduced. The configuration properties to enable com-
pression for map outputs and to set the compression format are shown in Table 5-6.

Table 5-6. Map output compression properties

Property name Type Default value Description
mapreduce.map.out boolean false Whether to compress
put.compress map outputs
mapreduce.map.out Class org.apache.hadoop.10.compress.De The compression codec
put.compress.codec faultCodec to use for map outputs

Here are the lines to add to enable gzip map output compression in your job (using the
new API):

Configuration conf = new Configuration();

conf.setBoolean(Job.MAP_OUTPUT_COMPRESS, true);

conf.setClass(Job.MAP_OUTPUT_COMPRESS_CODEC, GzipCodec.class,
CompressionCodec.class);

Job job = new Job(conf);

In the old API (see Appendix D), there are convenience methods on the JobConf object
for doing the same thing:

conf.setCompressMapOutput(true);
conf.setMapOutputCompressorClass(GzipCodec.class);

Serialization

Serialization is the process of turning structured objects into a byte stream for trans-
mission over a network or for writing to persistent storage. Deserialization is the reverse
process of turning a byte stream back into a series of structured objects.

Serialization is used in two quite distinct areas of distributed data processing: for
interprocess communication and for persistent storage.

In Hadoop, interprocess communication between nodes in the system is implemented
using remote procedure calls (RPCs). The RPC protocol uses serialization to render the
message into a binary stream to be sent to the remote node, which then deserializes the
binary stream into the original message. In general, it is desirable that an RPC seriali-
zation format is:

Compact
A compact format makes the best use of network bandwidth, which is the most
scarce resource in a data center.
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Fast
Interprocess communication forms the backbone for a distributed system, so it is
essential that there is as little performance overhead as possible for the serialization
and deserialization process.

Extensible
Protocols change over time to meet new requirements, so it should be
straightforward to evolve the protocol in a controlled manner for clients and
servers. For example, it should be possible to add a new argument to a method call
and have the new servers accept messages in the old format (without the new ar-
gument) from old clients.

Interoperable
For some systems, it is desirable to be able to support clients that are written in
different languages to the server, so the format needs to be designed to make this
possible.

On the face of it, the data format chosen for persistent storage would have different
requirements from a serialization framework. After all, the lifespan of an RPC is less
than a second, whereas persistent data may be read years after it was written. But it turns
out, the four desirable properties of an RPC’s serialization format are also crucial for a
persistent storage format. We want the storage format to be compact (to make efficient
use of storage space), fast (so the overhead in reading or writing terabytes of data is
minimal), extensible (so we can transparently read data written in an older format), and
interoperable (so we can read or write persistent data using different languages).

Hadoop uses its own serialization format, Writables, which is certainly compact and
fast, but not so easy to extend or use from languages other than Java. Because Writables
are central to Hadoop (most MapReduce programs use them for their key and value
types), we look at them in some depth in the next three sections, before looking at some
of the other serialization frameworks supported in Hadoop. Avro (a serialization system
that was designed to overcome some of the limitations of Writables) is covered in
Chapter 12.

The Writable Interface

The Writable interface defines two methods—one for writing its state to a DataOut
put binary stream and one for reading its state from a DataInput binary stream:

package org.apache.hadoop.10;

import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;

public interface Writable {
void write(DataOutput out) throws IOException;
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void readFields(DataInput in) throws IOException;

}

Let’s look at a particular Writable to see what we can do with it. We will use
IntWritable, a wrapper for a Java int. We can create one and set its value using the
set() method:

IntWritable writable = new IntWritable();
writable.set(163);

Equivalently, we can use the constructor that takes the integer value:
IntWritable writable = new IntWritable(163);

To examine the serialized form of the IntWritable, we write a small helper method
that wraps a java.io.ByteArrayOutputStreamin a java.ilo.DataOutputStream (an
implementation of java.tio.DataOutput) to capture the bytes in the serialized stream:

public static byte[] serialize(Writable writable) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dataOut = new DataOutputStream(out);
writable.write(dataOut);
dataOut.close();
return out.toByteArray();

}

An integer is written using four bytes (as we see using JUnit 4 assertions):

byte[] bytes = serialize(writable);
assertThat(bytes.length, is(4));

The bytes are written in big-endian order (so the most significant byte is written to the
stream first, which is dictated by the java.io.DataOutput interface), and we can see
their hexadecimal representation by using a method on Hadoop’s StringUtils:

assertThat(StringUtils.byteToHexString(bytes), is("000000a3"));

Let’s try deserialization. Again, we create a helper method to read a Writable object
from a byte array:

public static byte[] deserialize(Writable writable, byte[] bytes)
throws IOException {
ByteArrayInputStream in = new ByteArrayInputStream(bytes);
DataInputStream dataln = new DataInputStream(in);
writable.readFields(dataln);
datalIn.close();
return bytes;

}

We construct a new, value-less IntWritable, and then call deserialize() to read from
the output data that we just wrote. Then we check that its value, retrieved using the
get() method, is the original value, 163:
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IntWritable newWritable = new IntWritable();
deserialize(newWritable, bytes);
assertThat(newWritable.get(), 1s(163));

WritableComparable and comparators

IntWritable implements the WritableComparable interface, which is just a subinter-
face of the Writable and java.lang.Comparable interfaces:

package org.apache.hadoop.io;

public interface WritableComparable<T> extends Writable, Comparable<T> {

}

Comparison of types is crucial for MapReduce, where there is a sorting phase during
which keys are compared with one another. One optimization that Hadoop provides is
the RawComparator extension of Java’s Comparator:

package org.apache.hadoop.10;
import java.util.Comparator;
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int s1, int 11, byte[] b2, int s2, int 12);

}

This interface permits implementors to compare records read from a stream without
deserializing them into objects, thereby avoiding any overhead of object creation. For
example, the comparator for IntWritables implements the raw compare() method by
reading an integer from each of the byte arrays b1 and b2 and comparing them directly
from the given start positions (s1 and s2) and lengths (11 and 12).

WritableComparator is a general-purpose implementation of RawComparator for
WritableComparable classes. It provides two main functions. First, it provides a default
implementation of the raw compare() method that deserializes the objects to be com-
pared from the stream and invokes the object compare() method. Second, it acts as a
factory for RawComparator instances (that Writable implementations have registered).
For example, to obtain a comparator for IntWritable, we just use:

RawComparator<IntWritable> comparator =
WritableComparator.get(IntWritable.class);

The comparator can be used to compare two IntWritable objects:

IntWritable wl = new IntWritable(163);
IntWritable w2 = new IntWritable(67);
assertThat(comparator.compare(wl, w2), greaterThan(0));

or their serialized representations:
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byte[] bl = serialize(wl);

byte[] b2 = serialize(w2);

assertThat(comparator.compare(bl, 0, bi.length, b2, 0, b2.length),
greaterThan(0));

Writable Classes

Hadoop comes with a large selection of Writable classes, which are available in the
org.apache.hadoop. o package. They form the class hierarchy shown in Figure 5-1.
Writable wrappers for Java primitives

There are Writable wrappers for all the Java primitive types (see Table 5-7) except char
(which can be stored in an IntWritable). All have a get() and set() method for re-
trieving and storing the wrapped value.

Table 5-7. Writable wrapper classes for Java primitives

Java primitive Writable implementation Serialized size (bytes)

boolean BooleanWritable 1
byte ByteWritable 1
short ShortWritable 2
int IntWritable 4
VIntWritable 1-5
float FloatWritable 4
long LongWritable 8
VLongWritable 1-9
double DoubleWritable 8

When it comes to encoding integers, there is a choice between the fixed-length formats
(IntWritable and LongWritable) and the variable-length formats (VIntWritable and
VLongWritable). The variable-length formats use only a single byte to encode the value
ifit is small enough (between —-112 and 127, inclusive); otherwise, they use the first byte
to indicate whether the value is positive or negative, and how many bytes follow. For
example, 163 requires two bytes:

byte[] data = serialize(new VIntWritable(163));
assertThat(StringUtils.byteToHexString(data), is("8fa3"));
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How do you choose between a fixed-length and a variable-length encoding? Fixed-
length encodings are good when the distribution of values is fairly uniform across the
whole value space, such as when using a (well-designed) hash function. Most numeric
variables tend to have nonuniform distributions, though, and on average, the variable-
length encoding will save space. Another advantage of variable-length encodings is that
you can switch from VIntWritable to VLongWritable, because their encodings are ac-
tually the same. So, by choosing a variable-length representation, you have room to
grow without committing to an 8-byte long representation from the beginning.

Text

Text is a Writable for UTF-8 sequences. It can be thought of as the Writable equivalent
of java.lang.String.

The Text class uses an int (with a variable-length encoding) to store the number of
bytes in the string encoding, so the maximum value is 2 GB. Furthermore, Text uses
standard UTF-8, which makes it potentially easier to interoperate with other tools that
understand UTE-8.

Indexing. Because of its emphasis on using standard UTE-8, there are some differences
between Text and the Java String class. Indexing for the Text class is in terms of position
in the encoded byte sequence, not the Unicode character in the string or the Java char
code unit (as it is for String). For ASCII strings, these three concepts of index position
coincide. Here is an example to demonstrate the use of the charAt() method:

Text t = new Text("hadoop");
assertThat(t.getLength(), 1s(6));
assertThat(t.getBytes().length, is(6));

assertThat(t.charAt(2), is((int) 'd'));
assertThat("Out of bounds", t.charAt(100), is(-1));

Notice that charAt() returns an int representing a Unicode code point, unlike the
String variant that returns a char. Text also has a find() method, which is analogous
to String’s index0f():

Text t = new Text("hadoop");

assertThat("Find a substring", t.find("do"), is(2));

assertThat("Finds first 'o'", t.find("0"), 1s(3));

assertThat("Finds 'o' from position 4 or later", t.find("o", 4), is(4));
assertThat("No match", t.find("pig"), is(-1));
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Unicode. When we start using characters that are encoded with more than a single byte,
the differences between Text and String become clear. Consider the Unicode characters
shown in Table 5-8.2

Table 5-8. Unicode characters

Unicode code point

Name

UTF-8 code units

Java representation

U+0041 U+00DF U+6771 U+10400

LATIN CAPITAL LATIN SMALL N/A (a unified Han DESERET CAPITAL LETTER
LETTER A LETTER SHARP S ideograph) LONG |

41 c39f e69d b1l 09090 80

\u6041 \uGODF \u6771 \uD801\uDCOO

All but the last character in the table, U+10400, can be expressed using a single Java
char. U+10400 is a supplementary character and is represented by two Java chars,
known asa surrogate pair. The tests in Example 5-5 show the differences between String
and Text when processing a string of the four characters from Table 5-8.

Example 5-5. Tests showing the differences between the String and Text classes

public class StringTextComparisonTest {

public void string() throws UnsupportedEncodingException {

String s = "\u0041\udODF\u6771\uD801\uDCOO";

assertThat(s.
assertThat(s.

assertThat(s.
assertThat(s.
assertThat(s.
assertThat(s.

assertThat(s.
assertThat(s.
assertThat(s.
assertThat(s.
assertThat(s.

assertThat(s.
assertThat(s.
assertThat(s.
assertThat(s.

length(), is(5));
getBytes("UTF-8").length, 1s(10));

index0f("\u0041"), is(0));
index0f ("\uGODF"), is(1));
index0f("\u6771"), is(2));
indexOf ("\uD801\uDCOO"), 1s(3));

charAt(0), is('\u0041'));
charAt(1), is('\uGGDF'));
charAt(2), is('\u6771'));
charAt(3), is('\uD801'));
charAt(4), is('\uDC0O'));

codePointAt(0), is(0x0041));
codePointAt(1), is(0x00DF));
codePointAt(2), is(0x6771));
codePointAt(3), 1s(0x10400));

5 <«

. This example is based on one from Norbert Lindenberg and Masayoshi Okutsu’s “Supplementary Characters

in the Java Platform,” May 2004.
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public void text() {

Text t = new Text("\u6041\uOODF\u6771\uD801\uDCOO");
assertThat(t.getLength(), 1s(10));

assertThat(t.find("\u0041"), 1s(0));
assertThat(t.find("\uGODF"), is(1));
assertThat(t.find("\u6771"), 1s(3));
assertThat(t.find("\ubD801\uDCOO"), 1s(6));

assertThat(t.charAt(0), is(0x0041));
assertThat(t.charAt(1), is(Ox00DF));
assertThat(t.charAt(3), is(0x6771));
assertThat(t.charAt(6), i1s(0x10400));
}
}

The test confirms that the length of a String is the number of char code units it contains
(five, made up of one from each of the first three characters in the string and a surrogate
pair from the last), whereas the length of a Text object is the number of bytes in its
UTF-8 encoding (10 = 1+2+3+4). Similarly, the index0f() method in String returns
an index in char code units, and find() for Text returns a byte offset.

The charAt() method in String returns the char code unit for the given index, which
in the case of a surrogate pair will not represent a whole Unicode character. The code
PointAt() method, indexed by char code unit, is needed to retrieve a single Unicode
character represented as an int. In fact, the charAt() method in Text is more like the
codePointAt() method than its namesake in String. The only difference is that it is
indexed by byte offset.

Iteration. Iterating over the Unicode characters in Text is complicated by the use of byte
offsets for indexing, since you can’t just increment the index. The idiom for iteration is
a little obscure (see Example 5-6): turn the Text object into a java.nio.ByteBuffer,
then repeatedly call the bytesToCodePoint() static method on Text with the buffer.
This method extracts the next code point as an int and updates the position in the
buffer. The end of the string is detected when bytesToCodePoint() returns -1.

Example 5-6. Iterating over the characters in a Text object

public class TextIterator {

public static void main(String[] args) {
Text t = new Text("\u0041\uOODF\u6771\uD801\uDCOO");

ByteBuffer buf = ByteBuffer.wrap(t.getBytes(), 0, t.getLength());
int cp;
while (buf.hasRemaining() && (cp = Text.bytesToCodePoint(buf)) != -1) {

Serialization | 117



System.out.println(Integer.toHexString(cp));
}
}
}

Running the program prints the code points for the four characters in the string:

% hadoop TextIterator
41

df

6771

10400

Mutability. Another difference from String is that Text is mutable (like all Writable
implementations in Hadoop, except NullWritable, which is a singleton). You can reuse
a Text instance by calling one of the set() methods on it. For example:

Text t = new Text("hadoop");
t.set("pig");

assertThat(t.getLength(), 1s(3));
assertThat(t.getBytes().length, 1s(3));

In some situations, the byte array returned by the getBytes() meth-
od may be longer than the length returned by getLength():

Text t = new Text("hadoop");
\ t.set(new Text("pig"));
assertThat(t.getLength(), 1s(3));
assertThat("Byte length not shortened", t.getBytes().length,
is(6));

This shows why it is imperative that you always call getLength()
when calling getBytes(), so you know how much of the byte array
is valid data.

Resorting to String. Text doesn’t have as rich an API for manipulating strings as
java.lang.String, so in many cases, you need to convert the Text object to a String.
This is done in the usual way, using the toString() method:

assertThat(new Text("hadoop").toString(), is("hadoop"));

BytesWritable

BytesWritable is a wrapper for an array of binary data. Its serialized format is a 4-byte
integer field that specifies the number of bytes to follow, followed by the bytes them-
selves. For example, the byte array of length 2 with values 3 and 5 is serialized as a 4-
byte integer (00000002) followed by the two bytes from the array (03 and 05):
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BytesWritable b = new BytesWritable(new byte[] { 3, 5 });
byte[] bytes = serialize(b);
assertThat(StringUtils.byteToHexString(bytes), is("000000020305"));

BytesWritable is mutable, and its value may be changed by calling its set() method.
As with Text, the size of the byte array returned from the getBytes() method for
BytesWritable—the capacity—may not reflect the actual size of the data stored in the
BytesWritable. You can determine the size of the BytesWritable by calling get
Length(). To demonstrate:

b.setCapacity(11);
assertThat(b.getLength(), 1s(2));
assertThat(b.getBytes().length, is(11));

NullWritable

NullWritableis a special type of Writable, as it has a zero-length serialization. No bytes
are written to or read from the stream. It is used as a placeholder; for example, in Map-
Reduce, a key or a value can be declared as a NullWritable when you don’t need to use
that position, effectively storing a constant empty value. NullWritable canalso be useful
as a key in a SequenceFile when you want to store a list of values, as opposed to key-
value pairs. It is an immutable singleton, and the instance can be retrieved by calling
NullWritable.get().

ObjectWritable and GenericWritable

ObjectWritable is a general-purpose wrapper for the following: Java primitives,
String, enum, Writable, null, or arrays of any of these types. It is used in Hadoop RPC
to marshal and unmarshal method arguments and return types.

ObjectWritable is useful when a field can be of more than one type. For example, if
the values in a SequenceFile have multiple types, you can declare the value type as an
ObjectWritable and wrap each type in an ObjectWritable. Being a general-purpose
mechanism, it wastes a fair amount of space because it writes the classname of the
wrapped type every time it is serialized. In cases where the number of types is small and
known ahead of time, this can be improved by having a static array of types and using
the index into the array as the serialized reference to the type. This is the approach that
GenericWritable takes, and you have to subclass it to specify which types to support.

Writable collections

The org.apache.hadoop.io package includes six Writable collection types: Array
Writable, ArrayPrimitiveWritable, TwoDArrayWritable, MapWritable,
SortedMapWritable, and EnumSetWritable.

ArrayWritable and TwoDArrayWritable are Writable implementations for arrays and
two-dimensional arrays (array of arrays) of Writable instances. All the elements of an
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ArrayWritable or a TwoDArrayWritable must be instances of the same class, which is
specified at construction as follows:

ArrayWritable writable = new ArrayWritable(Text.class);

In contexts where the Writable is defined by type, such as in SequenceFile keys or
values or as input to MapReduce in general, you need to subclass ArrayWritable (or
TwoDArrayWritable, as appropriate) to set the type statically. For example:

public class TextArrayWritable extends ArrayWritable {
public TextArrayWritable() {
super(Text.class);
}
}

ArrayWritable and TwoDArrayWritable both have get() and set() methods, as well
as a toArray() method, which creates a shallow copy of the array (or 2D array).

ArrayPrimitivelritable is a wrapper for arrays of Java primitives. The component
type is detected when you call set(), so there is no need to subclass to set the type.

MapWritable is an implementation of java.util.Map<Writable, Writable>,and Sor
tedMapWritable is an implementation of java.util.SortedMap<WritableCompara

ble, Writable>. The type of each key and value field is a part of the serialization format
for that field. The type is stored as a single byte that acts as an index into an array of
types. The array is populated with the standard types in the org.apache.hadoop.io
package, but custom Writable types are accommodated, too, by writing a header that
encodes the type array for nonstandard types. As they are implemented, MapWritable
and SortedMapWritable use positive byte values for custom types, so a maximum of
127 distinct nonstandard Writable classes can be used in any particular MapWritable
or SortedMapWritable instance. Here’s a demonstration of using a MapWritable with
different types for keys and values:

MapWritable src = new MapWritable();
src.put(new IntWritable(1), new Text("cat"));
src.put(new VIntWritable(2), new LongWritable(163));

MapWritable dest = new MapWritable();
WritableUtils.cloneInto(dest, src);
assertThat((Text) dest.get(new IntWritable(1)), is(new Text("cat")));
assertThat((LongWritable) dest.get(new VIntWritable(2)),
is(new LongWritable(163)));

Conspicuous by their absence are Writable collection implementations for sets and
lists. A general set can be emulated by using a MapWritable (or a SortedMapWritable
for a sorted set) with NullWritable values. There is also EnumSetWritable for sets of
enum types. For lists of a single type of Writable, ArrayWritable is adequate, but to
store different types of Writable in a single list, you can use GenericWritable to wrap
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the elements in an ArrayWritable. Alternatively, you could write a general ListWrita
ble using the ideas from MapWritable.

Implementing a Custom Writable

Hadoop comes with a useful set of Writable implementations that serve most purposes;
however, on occasion, you may need to write your own custom implementation. With
a custom Writable, you have full control over the binary representation and the sort
order. Because Writablesare at the heart of the MapReduce data path, tuning the binary
representation can have a significant effect on performance. The stock Writable
implementations that come with Hadoop are well tuned, but for more elaborate struc-
tures, it is often better to create a new Writable type rather than composing the stock

types.

If you are considering writing a custom Writable, it may be worth
trying another serialization framework, like Avro, that allows you to
define custom types declaratively. See “Serialization Frameworks” on
page 126 and Chapter 12.

To demonstrate how to create a custom Writable, we shall write an implementation
that represents a pair of strings, called TextPatir. The basic implementation is shown
in Example 5-7.

Example 5-7. A Writable implementation that stores a pair of Text objects

import java.io.*;
import org.apache.hadoop.io0.*;
public class TextPair implements WritableComparable<TextPair> {

private Text first;
private Text second;

public TextPair() {
set(new Text(), new Text());
}

public TextPair(String first, String second) {
set(new Text(first), new Text(second));

}
public TextPair(Text first, Text second) {
set(first, second);

3

public void set(Text first, Text second) {
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this.first = first;
this.second = second;

}

public Text getFirst() {
return first;

}

public Text getSecond() {
return second;

}

public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);

}

public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);

}

public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}

public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}

return false;

}

public String toString() {
return first + "\t" + second;

}

public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}
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The first part of the implementation is straightforward: there are two Text instance
variables, first and second, and associated constructors, getters, and setters. All
Writable implementations must have a default constructor so that the MapReduce
framework can instantiate them, then populate their fields by calling readFields().
Writable instances are mutable and often reused, so you should take care to avoid
allocating objects in the write() or readFields() methods.

TextPair’s write() method serializes each Text object in turn to the output stream by
delegating to the Text objects themselves. Similarly, readFields() deserializes the bytes
from the input stream by delegating to each Text object. The DataOutput and DataInput
interfaces have a rich set of methods for serializing and deserializing Java primitives, so,
in general, you have complete control over the wire format of your Writable object.

Just as you would for any value object you write in Java, you should override the
hashCode(), equals(), and toString() methods from java.lang.0Object. The hash
Code() method is used by the HashPartitioner (the default partitioner in MapReduce)
to choose a reduce partition, so you should make sure that you write a good hash func-
tion that mixes well to ensure reduce partitions are of a similar size.

If you plan to use your custom Writable with TextOutputFormat,
you must implement its toString() method. TextOutputFormat
calls toString() on keys and values for their output representa-

\ tion. For TextPatir, we write the underlying Text objects as strings
separated by a tab character.

TextPatir is an implementation of WritableComparable, so it provides an implemen-
tation of the compareTo() method that imposes the ordering you would expect: it sorts
by the first string followed by the second. Notice that, apart from the number of Text
objects it can store, TextPair differs from TextArrayWritable (which we discussed in
the previous section), since TextArrayWritable is only a Writable, not a Writable
Comparab'le.

Implementing a RawComparator for speed

The code for TextPatir in Example 5-7 will work as it stands; however, there is a further
optimization we can make. As explained in “WritableComparable and comparators” on
page 112, when TextPatir is being used as a key in MapReduce, it will have to be dese-
rialized into an object for the compareTo() method to be invoked. What if it were pos-
sible to compare two TextPair objects just by looking at their serialized
representations?

It turns out that we can do this because TextPatir is the concatenation of two Text
objects, and the binary representation of a Text object is a variable-length integer con-
taining the number of bytes in the UTF-8 representation of the string, followed by the
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UTF-8 bytes themselves. The trick is to read the initial length so we know how long the
first Text object’s byte representation is; then we can delegate to Text’s RawCompara
tor and invoke it with the appropriate offsets for the first or second string. Example 5-8
gives the details (note that this code is nested in the TextPatir class).

Example 5-8. A RawComparator for comparing TextPair byte representations

public static class Comparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();

public Comparator() {
super(TextPair.class);

}

public int compare(byte[] b1, int s1, int 11,
byte[] b2, int s2, int 12) {

try {
int firstLl = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(bl, si1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
int cmp = TEXT_COMPARATOR.compare(bl, s1, firstL1l, b2, s2, firstL2);
if (cmp != 0) {

return cmp;
}
return TEXT_COMPARATOR.compare(bl, s1 + firstL1, 11 - firstL1,
b2, s2 + firstL2, 12 - firstL2);

} catch (IOException e) {
throw new IllegalArgumentException(e);

}

}
}

static {
WritableComparator.define(TextPair.class, new Comparator());

}

We actually subclass WritableComparator rather than implementing RawComparator
directly, since it provides some convenience methods and default implementations. The
subtle part of this code is calculating firstL1 and firstL2, the lengths of the first Text
field in each byte stream. Each is made up of the length of the variable-length integer
(returned by decodeVIntSize() on WritableUtils) and the value it is encoding (re-
turned by readvInt()).

The static block registers the raw comparator so that whenever MapReduce sees the
TextPair class, it knows to use the raw comparator as its default comparator.
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Custom comparators

As you can see with TextPair, writing raw comparators takes some care because you
have to deal with details at the byte level. It is worth looking at some of the implemen-
tations of Writable in the org.apache.hadoop. io package for further ideas if you need
to write your own. The utility methods on WritableUtils are very handy, too.

Custom comparators should also be written to be RawComparators, if possible. These
are comparators that implement a different sort order from the natural sort order de-
fined by the default comparator. Example 5-9 shows a comparator for TextPatr, called
FirstComparator, that considers only the first string of the pair. Note that we override
the compare() method that takes objects so both compare() methods have the same
semantics.

We will make use of this comparator in Chapter 9, when we look at joins and secondary
sorting in MapReduce (see “Joins” on page 268).

Example 5-9. A custom RawComparator for comparing the first field of TextPair byte
representations

public static class FirstComparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();

public FirstComparator() {
super(TextPair.class);

}

public int compare(byte[] b1, int s1, int 11,
byte[] b2, int s2, int 12) {

try {
int firstLl = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1l, si1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
return TEXT_COMPARATOR.compare(bl, si1, firstL1l, b2, s2, firstL2);

} catch (IOException e) {
throw new IllegalArgumentException(e);

}

}

public int compare(WritableComparable a, WritableComparable b) {
if (a instanceof TextPair && b instanceof TextPair) {
return ((TextPair) a).first.compareTo(((TextPair) b).first);
}
return super.compare(a, b);
}
}
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Serialization Frameworks

Although most MapReduce programs use Writable key and value types, this isn’t man-
dated by the MapReduce API. In fact, any type can be used; the only requirement is a
mechanism that translates to and from a binary representation of each type.

To support this, Hadoop has an API for pluggable serialization frameworks. A seriali-
zation framework is represented by an implementation of Serialization (in the
org.apache.hadoop.io.serializer package). WritableSerialization, for example,
is the implementation of Serialization for Writable types.

A Serialization defines a mapping from types to Serializer instances (for turning
an object into a byte stream) and Deserializer instances (for turning a byte stream
into an object).

Set the 1o.serializations property to a comma-separated list of classnames in order
to register Serialization implementations. Its default value includes org.apache.ha
doop.io.serializer.WritableSerialization and the Avro Specific and Reflect se-
rializations (see “Avro Data Types and Schemas” on page 346), which means that only
Writable or Avro objects can be serialized or deserialized out of the box.

Hadoop includes a class called JavaSerialization that uses Java Object Serialization.
Although it makes it convenient to be able to use standard Java types such as Integer
or String in MapReduce programs, Java Object Serialization is not as efficient as Writ-
ables, so it’s not worth making this trade-off (see the following sidebar).

Why Not Use Java Object Serialization?

Java comes with its own serialization mechanism, called Java Object Serialization (often
referred to simply as “Java Serialization”), that is tightly integrated with the language, so
it’s natural to ask why this wasn’t used in Hadoop. Here’s what Doug Cutting said in
response to that question:

Why didn’t I use Serialization when we first started Hadoop? Because it looked big and
hairy and I thought we needed something lean and mean, where we had precise control
over exactly how objects are written and read, since that is central to Hadoop. With
Serialization you can get some control, but you have to fight for it.

The logic for not using RMI [Remote Method Invocation] was similar. Effective, high-
performance inter-process communications are critical to Hadoop. I felt like we'd need
to precisely control how things like connections, timeouts and buffers are handled, and
RMI gives you little control over those.

The problem is that Java Serialization doesn’t meet the criteria for a serialization format
listed earlier: compact, fast, extensible, and interoperable.
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Serialization IDL

There are a number of other serialization frameworks that approach the problem in a
different way: rather than defining types through code, you define them in a language-
neutral, declarative fashion, using an interface description language (IDL). The system
can then generate types for different languages, which is good for interoperability. They
also typically define versioning schemes that make type evolution straightforward.

Apache Thrift and Google Protocol Buffers are both popular serialization frameworks,
and both are commonly used as a format for persistent binary data. There is limited
support for these as MapReduce formats;* however, they are used internally in parts of
Hadoop for RPC and data exchange.

Avro is an IDL-based serialization framework designed to work well with large-scale
data processing in Hadoop. It is covered in Chapter 12.

File-Based Data Structures

For some applications, you need a specialized data structure to hold your data. For doing
MapReduce-based processing, putting each blob of binary data into its own file doesn’t
scale, so Hadoop developed a number of higher-level containers for these situations.

SequenceFile

Imagine a logfile where each log record is a new line of text. If you want to log binary
types, plain text isn't a suitable format. Hadoop’s SequenceFile class fits the bill in
this situation, providing a persistent data structure for binary key-value pairs. To use it
as a logfile format, you would choose a key, such as timestamp represented by a
LongWritable, and the value would be a Writable that represents the quantity being
logged.

SequenceFiles also work well as containers for smaller files. HDFS and MapReduce are
optimized for large files, so packing files into a SequenceFile makes storing
and processing the smaller files more efficient (“Processing a whole file as a record” on
page 228 contains a program to pack files into a SequenceFile).*

Writing a SequencefFile

To create a SequenceFile, use one of its createWriter() static methods, which return
a SequenceFile.Writer instance. There are several overloaded versions, but they all
require you to specify a stream to write to (either an FSDataOutputStream or a

3. Twitter’s Elephant Bird project includes tools for working with Thrift and Protocol Buffers in Hadoop.

4. In asimilar vein, the blog post “A Million Little Files” by Stuart Sierra includes code for converting a tar file
into a SequenceFile.
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FileSystem and Path pairing), a Configuration object, and the key and value types.
Optional arguments include the compression type and codec, a Progressable callback
to be informed of write progress, and a Metadata instance to be stored in the Sequen
ceFile header.

The keys and values stored in a SequenceFile do not necessarily need to be Writables.
Any types that can be serialized and deserialized by a Serialization may be used.

Once you have a SequenceFile.Writer, you then write key-value pairs using the
append() method. When you've finished, you call the close() method (Sequence
File.Writer implements java.io.Closeable).

Example 5-10 shows a short program to write some key-value pairs to a Sequence
File using the APT just described.

Example 5-10. Writing a SequenceFile

public class SequenceFileWriteDemo {

private static final String[] DATA = {
"One, two, buckle my shoe",
"Three, four, shut the door",
"Five, six, pick up sticks",
"Seven, eight, lay them straight",
"Nine, ten, a big fat hen"

};

public static void main(String[] args) throws IOException {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
Path path = new Path(uri);

IntWritable key = new IntWritable();
Text value = new Text();
SequenceFile.Writer writer = null;
try {
writer = SequenceFile.createWriter(fs, conf, path,
key.getClass(), value.getClass());

for (int 1 = 0; 1 < 100; 1++) {
key.set(100 - 1);
value.set(DATA[1 % DATA.length]);
System.out.printf("[%s]\t%s\t%s\n", writer.getLength(), key, value);
writer.append(key, value);
}
} finally {
I0Utils.closeStream(writer);
}
}
}
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The keys in the sequence file are integers counting down from 100 to 1, represented as
IntWritable objects. The values are Text objects. Before each record is appended to
the SequenceFile.Writer, we call the getLength() method to discover the current
position in the file. (We will use this information about record boundaries in the next
section, when we read the file nonsequentially.) We write the position out to the console,
along with the key and value pairs. The result of running it is shown here:

% hadoop SequenceFileWriteDemo numbers.seq
[128] 100 One, two, buckle my shoe

[173] 99 Three, four, shut the door
[220] 98 Five, six, pick up sticks

[264] 97 Seven, eight, lay them straight
[314] 96 Nine, ten, a big fat hen

[359] 95 One, two, buckle my shoe

[404] 94 Three, four, shut the door
[451] 93 Five, six, pick up sticks

[495] 92 Seven, eight, lay them straight
[545] 91 Nine, ten, a big fat hen

[1976] 60 One, two, buckle my shoe

[2021] 59 Three, four, shut the door
[2088] 58 Five, six, pick up sticks
[2132] 57 Seven, eight, lay them straight
[2182] 56 Nine, ten, a big fat hen

[4557] 5 One, two, buckle my shoe

[4602] 4 Three, four, shut the door
[4649] 3 Five, six, pick up sticks
[4693] 2 Seven, eight, lay them straight
[4743] 1 Nine, ten, a big fat hen

Reading a SequenceFile

Reading sequence files from beginning to end is a matter of creating an instance of
SequenceFile.Reader and iterating over records by repeatedly invoking one of the
next() methods. Which one you use depends on the serialization framework you are
using. If you are using Writab'le types, you can use the next() method that takes a key
and a value argument and reads the next key and value in the stream into these
variables:

public boolean next(Writable key, Writable val)

The return value is true if a key-value pair was read and false if the end of the file has
been reached.

For other, non-Writable serialization frameworks (such as Apache Thrift), you should
use these two methods:

public Object next(Object key) throws IOException
public Object getCurrentValue(Object val) throws IOException
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In this case, you need to make sure that the serialization you want to use has been set
in the 1o.serializations property; see “Serialization Frameworks” on page 126.

If the next() method returns a non-null object, a key-value pair was read from the
stream, and the value can be retrieved using the getCurrentValue() method. Other-
wise, if next() returns null, the end of the file has been reached.

The program in Example 5-11 demonstrates how to read a sequence file that has
Writable keys and values. Note how the types are discovered from the Sequence
File.Reader via calls to getKeyClass() and getValueClass(), and then Reflectio
nUtils is used to create an instance for the key and an instance for the value. This
technique allows the program to be used with any sequence file that has Writable keys
and values.

Example 5-11. Reading a SequenceFile

public class SequenceFileReadDemo {

public static void main(String[] args) throws IOException {
String uri = args[0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
Path path = new Path(uri);

SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, path, conf);
Writable key = (Writable)
ReflectionUtils.newInstance(reader.getKeyClass(), conf);
Writable value = (Writable)
ReflectionUtils.newInstance(reader.getValueClass(), conf);
long position = reader.getPosition();
while (reader.next(key, value)) {
String syncSeen = reader.syncSeen() ? "*" :
System.out.printf("[%s%s]\t%s\t%s\n", position, syncSeen, key, value);
position = reader.getPosition(); // beginning of next record
}
} finally {
I0Utils.closeStream(reader);

}

nu,
B

3
}

Another feature of the program is that it displays the positions of the sync points in the
sequence file. A sync point is a point in the stream that can be used to resynchronize
with a record boundary if the reader is “lost”—for example, after seeking to an arbitrary
position in the stream. Sync points are recorded by SequenceFile.Writer, which in-
serts a special entry to mark the sync point every few records as a sequence file is being
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written. Such entries are small enough to incur only a modest storage overhead—less
than 1%. Sync points always align with record boundaries.

Running the program in Example 5-11 shows the sync points in the sequence file as
asterisks. The first one occurs at position 2021 (the second one occurs at position 4075,
but is not shown in the output):

% hadoop SequenceFileReadDemo numbers.seq

[128] 100 One, two, buckle my shoe

[173] 99 Three, four, shut the door
[220] 98 Five, six, pick up sticks

[264] 97 Seven, eight, lay them straight
[314] 96 Nine, ten, a big fat hen

[359] 95 One, two, buckle my shoe

[404] 94 Three, four, shut the door
[451] 93 Five, six, pick up sticks

[495] 92 Seven, eight, lay them straight
[545] 91 Nine, ten, a big fat hen

[590] 90 One, two, buckle my shoe

[1976] 60 One, two, buckle my shoe
[2021*] 59 Three, four, shut the door
[2088] 58 Five, six, pick up sticks
[2132] 57 Seven, eight, lay them straight
[2182] 56 Nine, ten, a big fat hen

[4557] 5 One, two, buckle my shoe

[4602] 4 Three, four, shut the door
[4649] 3 Five, six, pick up sticks
[4693] 2 Seven, eight, lay them straight
[4743] 1 Nine, ten, a big fat hen

There are two ways to seek to a given position in a sequence file. The first is the seek()
method, which positions the reader at the given point in the file. For example, seeking
to a record boundary works as expected:

reader.seek(359);
assertThat(reader.next(key, value), is(true));
assertThat(((IntWritable) key).get(), is(95));

Butifthe position in the file is not at a record boundary, the reader fails when the next()
method is called:

reader.seek(360);
reader.next(key, value); // fails with IOException

The second way to find a record boundary makes use of sync points. The sync(long
position) method on SequenceFile.Reader positions the reader at the next sync point
after position. (If there are no sync points in the file after this position, then the reader
will be positioned at the end of the file.) Thus, we can call sync() with any position in
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the stream—not necessarily a record boundary—and the reader will reestablish itself at
the next sync point so reading can continue:

reader.sync(360);
assertThat(reader.getPosition(), 1s(2021L));
assertThat(reader.next(key, value), is(true));
assertThat(((IntWritable) key).get(), 1s(59));

SequenceFile.Writer has a method called sync() for inserting a
sync point at the current position in the stream. This is not to be
confused with the hsync() method defined by the Syncable inter-

\ face for synchronizing buffers to the underlying device (see “Coher-
ency Model” on page 74).

Sync points come into their own when using sequence files as input to MapReduce,
since they permit the files to be split and different portions to be processed independ-
ently by separate map tasks (see “SequenceFileInputFormat” on page 236).

Displaying a SequenceFile with the command-line interface

The hadoop fs command has a - text option to display sequence files in textual form.
It looks at a file’s magic number so that it can attempt to detect the type of the file and
appropriately convert it to text. It can recognize gzipped files, sequence files, and Avro
datafiles; otherwise, it assumes the input is plain text.

For sequence files, this command is really useful only if the keys and values have mean-
ingful string representations (as defined by the toString() method). Also, if you have
your own key or value classes, you will need to make sure they are on Hadoop’s classpath.

Running it on the sequence file we created in the previous section gives the following
output:

% hadoop fs -text numbers.seq | head

100 One, two, buckle my shoe

99 Three, four, shut the door

98 Five, six, pick up sticks

97 Seven, eight, lay them straight
96 Nine, ten, a big fat hen

95 One, two, buckle my shoe

94 Three, four, shut the door

93 Five, six, pick up sticks

92 Seven, eight, lay them straight
91 Nine, ten, a big fat hen

Sorting and merging SequenceFiles

The most powerful way of sorting (and merging) one or more sequence files is to use
MapReduce. MapReduce is inherently parallel and will let you specify the number of
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reducers to use, which determines the number of output partitions. For example, by
specifying one reducer, you get a single output file. We can use the sort example that
comes with Hadoop by specifying that the input and output are sequence files and by
setting the key and value types:

% hadoop jar \
SHADOOP_HOME /share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar \
sort -r 1\
-inFormat org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat \
-outFormat org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat \
-outKey org.apache.hadoop.io.IntWritable \
-outValue org.apache.hadoop.io.Text \
numbers.seq sorted
hadoop fs -text sorted/part-r-00000 | head

Nine, ten, a big fat hen

Seven, eight, lay them straight

Five, six, pick up sticks

Three, four, shut the door

One, two, buckle my shoe

Nine, ten, a big fat hen

Seven, eight, lay them straight

Five, six, pick up sticks

Three, four, shut the door

One, two, buckle my shoe
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Sorting is covered in more detail in “Sorting” on page 255.

An alternative to using MapReduce for sort/merge is the SequenceFile.Sorter class,
which has a number of sort() and merge() methods. These functions predate Map-
Reduce and are lower-level functions than MapReduce (for example, to get parallelism,
you need to partition your data manually), so in general MapReduce is the preferred
approach to sort and merge sequence files.

The SequencefFile format

A sequence file consists of a header followed by one or more records (see Figure 5-2).
The first three bytes of a sequence file are the bytes SEQ, which act as a magic number;
these are followed by a single byte representing the version number. The header contains
other fields, including the names of the key and value classes, compression details, user-
defined metadata, and the sync marker.” Recall that the sync marker is used to allow a
reader to synchronize to a record boundary from any position in the file. Each file has
a randomly generated sync marker, whose value is stored in the header. Sync markers
appear between records in the sequence file. They are designed to incur less than a 1%
storage overhead, so they don’'t necessarily appear between every pair of records (such
is the case for short records).

5. Full details of the format of these fields may be found in SequenceFile’s documentation and source code.
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Header Record |Sync | Record | Record || Record  Sync

No Record Key
compression length length

Key

Record Record Key Ke Compressed
compression length length y value

4 4

Figure 5-2. The internal structure of a sequence file with no compression and with re-
cord compression

The internal format of the records depends on whether compression is enabled, and if
it is, whether it is record compression or block compression.

If no compression is enabled (the default), each record is made up of the record length
(in bytes), the key length, the key, and then the value. The length fields are written as 4-
byte integers adhering to the contract of the writeInt() method of java.io.DataOut
put. Keys and values are serialized using the Serialization defined for the class being
written to the sequence file.

The format for record compression is almost identical to that for no compression, except
the value bytes are compressed using the codec defined in the header. Note that keys
are not compressed.

Block compression (Figure 5-3) compresses multiple records at once; it is therefore
more compact than and should generally be preferred over record compression because
it has the opportunity to take advantage of similarities between records. Records are
added to a block until it reaches a minimum size in bytes, defined by the
io0.seqfile.compress.blocksize property; the default is one million bytes. A sync
marker is written before the start of every block. The format of ablockis a field indicating
the number of records in the block, followed by four compressed fields: the key lengths,
the keys, the value lengths, and the values.
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Header Block Block Block

Sync Sync

Sync Sync

Block
compression

Number of Compressed Compressed Compressed Compressed
records key lengths keys value lengths values

1-5

Figure 5-3. The internal structure of a sequence file with block compression

MapFile

A MapFileis asorted SequenceFile with an index to permit lookups by key. The index
is itself a SequenceF1ile that contains a fraction of the keys in the map (every 128th key,
by default). The idea is that the index can be loaded into memory to provide fast lookups
from the main data file, which is another SequenceFile containing all the map entries
in sorted key order.

MapFile offers a very similar interface to SequenceF1ile for reading and writing—the
main thing to be aware of is that when writing using MapFile.Writer, map entries must
be added in order, otherwise an I0Exception will be thrown.

MapFile variants

Hadoop comes with a few variants on the general key-value MapFile interface:

 SetFileis a specialization of MapFile for storing a set of Writable keys. The keys
must be added in sorted order.

o ArrayFile is a MapFile where the key is an integer representing the index of the
element in the array and the value is a Writable value.

o BloomMapFileisaMapFile thatoffers a fast version of the get() method, especially
for sparsely populated files. The implementation uses a dynamic Bloom filter for
testing whether a given key is in the map. The test is very fast because it is in-
memory, and it has a nonzero probability of false positives. Only if the test passes
(the key is present) is the regular get() method called.
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Other File Formats and Column-Oriented Formats

While sequence files and map files are the oldest binary file formats in Hadoop, they
are not the only ones, and in fact there are better alternatives that should be considered
for new projects.

Avro datafiles (covered in “Avro Datafiles” on page 352) are like sequence files in that they
are designed for large-scale data processing—they are compact and splittable—but they
are portable across different programming languages. Objects stored in Avro datafiles
are described by a schema, rather than in the Java code of the implementation of a
Writable object (as is the case for sequence files), making them very Java-centric. Avro
datafiles are widely supported across components in the Hadoop ecosystem, so they are
a good default choice for a binary format.

Sequence files, map files, and Avro datafiles are all row-oriented file formats, which
means that the values for each row are stored contiguously in the file. In a column-
oriented format, the rows in a file (or, equivalently, a table in Hive) are broken up into
row splits, then each split is stored in column-oriented fashion: the values for each row
in the first column are stored first, followed by the values for each row in the second
column, and so on. This is shown diagrammatically in Figure 5-4.

A column-oriented layout permits columns that are not accessed in a query to be skip-
ped. Consider a query of the table in Figure 5-4 that processes only column 2. With
row-oriented storage, like a sequence file, the whole row (stored in a sequence file re-
cord) isloaded into memory, even though only the second column is actually read. Lazy
deserialization saves some processing cycles by deserializing only the column fields that
are accessed, but it can’t avoid the cost of reading each row’s bytes from disk.

With column-oriented storage, only the column 2 parts of the file (highlighted in the
figure) need to be read into memory. In general, column-oriented formats work well
when queries access only a small number of columns in the table. Conversely, row-
oriented formats are appropriate when a large number of columns of a single row are
needed for processing at the same time.
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Logical table

coll | col2 | col3

row1 1 2 3

row2 4 5 6

row3 7 8 9

rowd | 10 1 12

Row-oriented layout (SequenceFile)

rowl row2 row3 row4

1123 4 516 71819 10 [ 11 | 12

Column-oriented layout (RCFile)
' row split1 ' row split 2

1 1
' coll col2 col3 ; ol col2 col3

I Ba B ERDRDE

Figure 5-4. Row-oriented versus column-oriented storage

Column-oriented formats need more memory for reading and writing, since they have
to buffer arow splitin memory, rather than justa single row. Also, it’s not usually possible
to control when writes occur (via flush or sync operations), so column-oriented formats
are not suited to streaming writes, as the current file cannot be recovered if the writer
process fails. On the other hand, row-oriented formats like sequence files and Avro
datafiles can be read up to the last sync point after a writer failure. It is for this reason
that Flume (see Chapter 14) uses row-oriented formats.

The first column-oriented file format in Hadoop was Hive’s RCFile, short for Record
Columnar File. It has since been superseded by Hive’s ORCFile (Optimized Record Col-
umnar File), and Parquet (covered in Chapter 13). Parquet is a general-purpose column-
oriented file format based on Google’s Dremel, and has wide support across Hadoop
components. Avro also has a column-oriented format called Trevni.
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CHAPTER 6
Developing a MapReduce Application

In Chapter 2, we introduced the MapReduce model. In this chapter, we look at the
practical aspects of developing a MapReduce application in Hadoop.

Writing a program in MapReduce follows a certain pattern. You start by writing your
map and reduce functions, ideally with unit tests to make sure they do what you expect.
Then you write a driver program to run a job, which can run from your IDE using a
small subset of the data to check that it is working. If it fails, you can use your IDE’s
debugger to find the source of the problem. With this information, you can expand your
unit tests to cover this case and improve your mapper or reducer as appropriate to handle
such input correctly.

When the program runs as expected against the small dataset, you are ready to unleash
it on a cluster. Running against the full dataset is likely to expose some more issues,
which you can fix as before, by expanding your tests and altering your mapper or reducer
to handle the new cases. Debugging failing programs in the cluster is a challenge, so
we'll look at some common techniques to make it easier.

After the program is working, you may wish to do some tuning, first by running through
some standard checks for making MapReduce programs faster and then by doing task
profiling. Profiling distributed programs is not easy, but Hadoop has hooks to aid in
the process.

Before we start writing a MapReduce program, however, we need to set up and configure
the development environment. And to do that, we need to learn a bit about how Hadoop
does configuration.

The Configuration API

Components in Hadoop are configured using Hadoop’s own configuration API. An
instance of the Configuration class (found in the org.apache.hadoop.conf package)
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represents a collection of configuration properties and their values. Each property is
named by a String, and the type of a value may be one of several, including Java prim-
itives such as boolean, int, long, and float; other useful types such as String, Class,
and java.io.File; and collections of Strings.

Configurationsread their properties from resources—XML files with a simple structure
for defining name-value pairs. See Example 6-1.

Example 6-1. A simple configuration file, configuration-1.xml

<?xml version="1.0"?>
<configuration>
<property>
<name>color</name>
<value>yellow</value>
<description>Color</description>
</property>

<property>
<name>size</name>
<value>10</value>
<description>Size</description>
</property>

<property>
<name>weight</name>
<value>heavy</value>
<final>true</final>
<description>Weight</description>
</property>

<property>
<name>size-weight</name>
<value>${size}, ${weight}</value>
<description>Size and weight</description>
</property>
</configuration>

Assuming this Configuration is in a file called configuration-1.xml, we can access its
properties using a piece of code like this:

Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
assertThat(conf.get("color"), is("yellow"));
assertThat(conf.getInt("size", 0), 1s(10));
assertThat(conf.get("breadth", "wide"), is("wide"));

There are a couple of things to note: type information is not stored in the XML file;
instead, properties can be interpreted as a given type when they are read. Also, the get()
methods allow you to specify a default value, which is used if the property is not defined
in the XML file, as in the case of breadth here.
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Combining Resources

Things get interesting when more than one resource is used to define a Configura
tion. This is used in Hadoop to separate out the default properties for the system,
defined internally in a file called core-default.xml, from the site-specific overrides in
core-site.xml. The file in Example 6-2 defines the size and weight properties.

Example 6-2. A second configuration file, configuration-2.xml

<?xml version="1.0"?>
<configuration>
<property>
<name>size</name>
<value>12</value>
</property>

<property>
<name>weight</name>
<value>light</value>
</property>
</configuration>

Resources are added to a Configuration in order:

Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
conf.addResource("configuration-2.xml");

Properties defined in resources that are added later override the earlier definitions. So
the size property takes its value from the second configuration file, configuration-2.xml:

assertThat(conf.getInt("size", 0), is(12));

However, properties that are marked as final cannot be overridden in later definitions.
The weight property is final in the first configuration file, so the attempt to override
it in the second fails, and it takes the value from the first:

assertThat(conf.get("weight"), is("heavy"));

Attempting to override final properties usually indicates a configuration error, so this
results in a warning message being logged to aid diagnosis. Administrators mark prop-
erties as final in the daemonss site files that they don’t want users to change in their
client-side configuration files or job submission parameters.

Variable Expansion

Configuration properties can be defined in terms of other properties, or system prop-
erties. For example, the property size-weight in the first configuration file is defined
as ${size},${weight}, and these properties are expanded using the values found in
the configuration:
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assertThat(conf.get("size-weight"), is("12,heavy"));
System properties take priority over properties defined in resource files:

System.setProperty("size", "14");
assertThat(conf.get("size-weight"), 1s("14,heavy"));

This feature is useful for overriding properties on the command line by using
-Dproperty=value JVM arguments.

Note that although configuration properties can be defined in terms of system proper-
ties, unless system properties are redefined using configuration properties, they are not
accessible through the configuration API. Hence:

System.setProperty("length", "2");
assertThat(conf.get("length"), is((String) null));

Setting Up the Development Environment

The first step is to create a project so you can build MapReduce programs and run them
in local (standalone) mode from the command line or within your IDE. The Maven
Project Object Model (POM) in Example 6-3 shows the dependencies needed for build-
ing and testing MapReduce programs.

Example 6-3. A Maven POM for building and testing a MapReduce application

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.hadoopbook</groupId>
<artifactId>hadoop-book-mr-dev</artifactId>
<version>4.0</version>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<hadoop.version>2.5.1</hadoop.version>
</properties>
<dependencies>
<!-- Hadoop main client artifact -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!-- Unit test artifacts -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.mrunit</groupId>
<artifactId>mrunit</artifactId>
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<version>1.1.0</version>
<classifier>hadoop2</classifier>
<scope>test</scope>
</dependency>
<!-- Hadoop test artifact for running mini clusters -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-minicluster</artifactId>
<version>${hadoop.version}</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>hadoop-examples</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.5</version>
<configuration>
<outputDirectory>${basedir}</outputDirectory>
</configuration>
</plugin>
</plugins>
</build>
</project>

The dependencies section is the interesting part of the POM. (It is straightforward to
use another build tool, such as Gradle or Ant with Ivy, as long as you use the same set
of dependencies defined here.) For building MapReduce jobs, you only need to have
the hadoop-client dependency, which contains all the Hadoop client-side classes
needed to interact with HDFS and MapReduce. For running unit tests, we use juntit,
and for writing MapReduce tests, we use mrunit. The hadoop-minicluster library
contains the “mini-” clusters that are useful for testing with Hadoop clusters running
in a single JVM.

Many IDEs can read Maven POM:s directly, so you can just point them at the directory
containing the pom.xml file and start writing code. Alternatively, you can use Maven to
generate configuration files for your IDE. For example, the following creates Eclipse
configuration files so you can import the project into Eclipse:
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% mvn eclipse:eclipse -DdownloadSources=true -DdownloadJavadocs=true

Managing Configuration

When developing Hadoop applications, it is common to switch between running the
application locally and running it on a cluster. In fact, you may have several clusters you
work with, or you may have a local “pseudodistributed” cluster that you like to test on
(a pseudodistributed cluster is one whose daemons all run on the local machine; setting
up this mode is covered in Appendix A).

One way to accommodate these variations is to have Hadoop configuration files con-
taining the connection settings for each cluster you run against and specify which one
you are using when you run Hadoop applications or tools. As a matter of best practice,
it's recommended to keep these files outside Hadoop’s installation directory tree, as this
makes it easy to switch between Hadoop versions without duplicating or losing settings.

For the purposes of this book, we assume the existence of a directory called conf that
contains three configuration files: hadoop-local.xml, hadoop-localhost.xml, and hadoop-
cluster.xml (these are available in the example code for this book). Note that there is
nothing special about the names of these files; they are just convenient ways to package
up some configuration settings. (Compare this to Table A-1 in Appendix A, which sets
out the equivalent server-side configurations.)

The hadoop-local.xml file contains the default Hadoop configuration for the default
filesystem and the local (in-JVM) framework for running MapReduce jobs:

<?2xml version="1.0"?>
<configuration>

<property>
<name>fs.defaultFS</name>
<value>file:///</value>
</property>

<property>
<name>mapreduce. framework.name</name>
<value>local</value>

</property>

</configuration>

The settings in hadoop-localhost.xml point to a namenode and a YARN resource man-
ager both running on localhost:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost/</value>
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</property>

<property>
<name>mapreduce. framework.name</name>
<value>yarn</value>

</property>

<property>
<pame>yarn.resourcemanager.address</name>
<value>localhost:8032</value>

</property>

</configuration>

Finally, hadoop-cluster.xml contains details of the cluster’s namenode and YARN re-
source manager addresses (in practice, you would name the file after the name of the
cluster, rather than “cluster” as we have here):

<?2xml version="1.0"?>
<configuration>

<property>
<name>fs.defaultFS</name>
<value>hdfs://namenode/</value>
</property>

<property>
<name>mapreduce. framework.name</name>
<value>yarn</value>

</property>

<property>
<npame>yarn.resourcemanager .address</name>
<value>resourcemanager:8032</value>
</property>

</configuration>

You can add other configuration properties to these files as needed.

Setting User Identity

The user identity that Hadoop uses for permissions in HDFS is determined by running
the whoami command on the client system. Similarly, the group names are derived from
the output of running groups.

If, however, your Hadoop user identity is different from the name of your user account
on your client machine, you can explicitly set your Hadoop username by setting the
HADOOP_USER_NAME environment variable. You can also override user group mappings
by means of the hadoop.user.group.static.mapping.overrides configuration
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property. For example, dr.who=;preston=directors,inventors means that the
dr.who user is in no groups, but preston is in the directors and inventors groups.

You can set the user identity that the Hadoop web interfaces run as by setting the
hadoop.http.staticuser.user property. By default, it is dr.who, which is not a su-
peruser, so system files are not accessible through the web interface.

Notice that, by default, there is no authentication with this system. See “Security” on
page 309 for how to use Kerberos authentication with Hadoop.

With this setup, it is easy to use any configuration with the -conf command-line switch.
For example, the following command shows a directory listing on the HDFS server
running in pseudodistributed mode on localhost:

% hadoop fs -conf conf/hadoop-localhost.xml -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2014-09-08 10:19 input
drwxr-xr-x - tom supergroup 0 2014-09-08 10:19 output

If you omit the -conf option, you pick up the Hadoop configuration in the etc/
hadoop subdirectory under $HADOOP_HOME. Or, if HADOOP_CONF_DIR is set, Hadoop con-
figuration files will be read from that location.

Here’s an alternative way of managing configuration settings. Copy
the etc/hadoop directory from your Hadoop installation to another
location, place the *-site.xml configuration files there (with appropri-
ate settings), and set the HADOOP_CONF_DIR environment variable to
the alternative location. The main advantage of this approach is that
you don’t need to specify -conf for every command. It also allows you
to isolate changes to files other than the Hadoop XML configura-
tion files (e.g., log4j.properties) since the HADOOP_CONF_DIR directory
has a copy of all the configuration files (see “Hadoop Configura-
tion” on page 292).

Tools that come with Hadoop support the - conf option, but it’s straightforward to make
your programs (such as programs that run MapReduce jobs) support it, too, using the
Tool interface.

GenericOptionsParser, Tool, and ToolRunner

Hadoop comes with a few helper classes for making it easier to run jobs from the com-
mand line. GenericOptionsParser is a class that interprets common Hadoop
command-line options and sets them on a Configuration object for your application
to use as desired. You don’t usually use GenericOptionsParser directly, as it's more
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convenient to implement the Tool interface and run your application with the
ToolRunner, which uses GenericOptionsParser internally:

public interface Tool extends Configurable {
int run(String [] args) throws Exception;

}

Example 6-4 shows a very simple implementation of Tool that prints the keys and values
of all the properties in the Tools Configuration object.

Example 6-4. An example Tool implementation for printing the properties in a
Configuration

public class ConfigurationPrinter extends Configured implements Tool {

static {
Configuration.addDefaultResource("hdfs-default.xml");
Configuration.addDefaultResource("hdfs-site.xml");
Configuration.addDefaultResource("yarn-default.xml");
Configuration.addDefaultResource("yarn-site.xml");
Configuration.addDefaultResource("mapred-default.xml");
Configuration.addDefaultResource("mapred-site.xml");

public int run(String[] args) throws Exception {
Configuration conf = getConf();

for (Entry<String, String> conf) {
System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());

}

return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new ConfigurationPrinter(), args);
System.exit(exitCode);
}
}

We make ConfigurationPrinterasubclass of Configured, whichisanimplementation
of the Configurable interface. All implementations of Tool need to implement
Configurable (since Tool extends it), and subclassing Configured is often the easiest
way to achieve this. The run() method obtains the Configuration using Configura
ble’s getConf() method and then iterates over it, printing each property to standard
output.

The static block makes sure that the HDFS, YARN, and MapReduce configurations are
picked up, in addition to the core ones (which Configuration knows about already).

ConfigurationPrinter’s main() method does not invoke its own run() method di-
rectly. Instead, we call ToolRunner’s static run() method, which takes care of creating
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a Configuration object for the Tool before calling its run() method. ToolRunner also
uses a GenericOptionsParser to pick up any standard options specified on the com-
mand line and to set them on the Configuration instance. We can see the effect of
picking up the properties specified in conf/hadoop-localhost.xml by running the fol-
lowing commands:

% mvn compile

% export HADOOP_CLASSPATH=target/classes/

% hadoop ConfigurationPrinter -conf conf/hadoop-localhost.xml \
| grep yarn.resourcemanager.address=

yarn.resourcemanager .address=1ocalhost:8032

Which Properties Can | Set?

ConfigurationPrinter is a useful tool for discovering what a property is set to in your
environment. For a running daemon, like the namenode, you can see its configuration
by viewing the /conf page on its web server. (See Table 10-6 to find port numbers.)

You can also see the default settings for all the public properties in Hadoop by looking
in the share/doc directory of your Hadoop installation for files called core-default.xml,
hdfs-default.xml, yarn-default.xml, and mapred-default.xml. Each property has a descrip-
tion that explains what it is for and what values it can be set to.

The default settings files’ documentation can be found online at pages linked from http://
hadoop.apache.org/docs/current/ (look for the “Configuration” heading in the naviga-
tion). You can find the defaults for a particular Hadoop release by replacing current in
the preceding URL with r<version>—for example, http://hadoop.apache.org/docs/
r2.5.0/.

Be aware that some properties have no effect when set in the client configuration. For
example, if you set yarn.nodemanager.resource.memory-mb in your job submission
with the expectation that it would change the amount of memory available to the node
managers running your job, you would be disappointed, because this property is hon-
ored only if set in the node manager’s yarn-site.xml file. In general, you can tell the
component where a property should be set by its name, so the fact that
yarn.nodemanager.resource.memory-mb starts with yarn.nodemanager gives you a
clue that it can be set only for the node manager daemon. This is not a hard and fast
rule, however, so in some cases you may need to resort to trial and error, or even to
reading the source.

Configuration property names have changed in Hadoop 2 onward, in order to give them
a more regular naming structure. For example, the HDFS properties pertaining to the
namenode have been changed to have a dfs.namenode prefix, so dfs.name.dir is now
dfs.namenode.name.dir. Similarly, MapReduce properties have the mapreduce prefix
rather than the older mapred prefix, so mapred. job.name is now mapreduce. job.name.
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This book uses the new property names to avoid deprecation warnings. The old property
names still work, however, and they are often referred to in older documentation. You
can find a table listing the deprecated property names and their replacements on the
Hadoop website.

We discuss many of Hadoop’s most important configuration properties throughout this

book.

GenericOptionsParser also allows you to set individual properties. For example:

% hadoop ConfigurationPrinter -D color=yellow | grep color
color=yellow

Here, the -D option is used to set the configuration property with key color to the value

yellow. Options specified with -D take priority over properties from the configuration

files. This is very useful because you can put defaults into configuration files and then
override them with the -D option as needed. A common example of this is setting the
number of reducers for a MapReduce job via -D mapreduce. job.reduces=n. This will
override the number of reducers set on the cluster or set in any client-side configuration

files.

The other options that GenericOptionsParser and ToolRunner support are listed in
Table 6-1. You can find more on Hadoop’s configuration API in “The Configuration
APT” on page 141.

N

Do not confuse setting Hadoop properties using the
-D property=value option to GenericOptionsParser (and Tool
Runner) with setting JVM system properties using the -Dproper
ty=value option to the java command. The syntax for JVM sys-
tem properties does not allow any whitespace between the D and the
property name, whereas GenericOptionsParser does allow
whitespace.

JVM system properties are retrieved from the java.lang.System
class, but Hadoop properties are accessible only from a Configura
tion object. So, the following command will print nothing, even
though the color system property has been set (via HADOOP_OPTS),
because the Systen class is not used by ConfigurationPrinter:
% HADOOP_OPTS='-Dcolor=yellow' \
hadoop ConfigurationPrinter | grep color

If you want to be able to set configuration through system proper-
ties, you need to mirror the system properties of interest in the
configuration file. See “Variable Expansion” on page 143 for fur-
ther discussion.
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Table 6-1. GenericOptionsParser and ToolRunner options

Option Description

-D property=value Sets the given Hadoop configuration property to the given value. Overrides any
default or site properties in the configuration and any properties set via the -conf
option.

-conf filename ... Adds the given files to the list of resources in the configuration. This is a convenient

way to set site properties or to set a number of properties at once.

-fs urt Sets the default filesystem to the given URI. Shortcut for
-D fs.defaultFS=uri.

-jt host:port Sets the YARN resource manager to the given host and port. (In Hadoop 1, it sets the
jobtracker address, hence the option name.) Shortcut for -D yarn.resource
manager.address=host:port.

-files file1, file2,... Copies the specified files from the local filesystem (or any filesystem if a scheme is
specified) to the shared filesystem used by MapReduce (usually HDFS) and makes
them available to MapReduce programs in the task’s working directory. (See
“Distributed Cache” on page 274 for more on the distributed cache mechanism for
copying files to machines in the cluster.)

-archives Copies the specified archives from the local filesystem (or any filesystem if a scheme

archivel,archivez,... is specified) to the shared filesystem used by MapReduce (usually HDFS), unarchives
them, and makes them available to MapReduce programs in the task’s working
directory.

-libjars jari,jar2,... Copies the specified JAR files from the local filesystem (or any filesystem if a scheme

is specified) to the shared filesystem used by MapReduce (usually HDFS) and adds
them to the MapReduce task’s classpath. This option is a useful way of shipping JAR
files that a job is dependent on.

Writing a Unit Test with MRUnit

The map and reduce functions in MapReduce are easy to test in isolation, which is a
consequence of their functional style. MRUnit is a testing library that makes it easy to
pass known inputs to a mapper or a reducer and check that the outputs are as expected.
MRUnit is used in conjunction with a standard test execution framework, such as JUnit,
so you can run the tests for MapReduce jobs in your normal development environment.
For example, all of the tests described here can be run from within an IDE by following
the instructions in “Setting Up the Development Environment” on page 144.
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The test for the mapper is shown in Example 6-5.

Example 6-5. Unit test for MaxTemperatureMapper

import java.ilo.IOException;

import org.apache.hadoop.i0.*;

import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.junit.*;

public class MaxTemperatureMapperTest {

public void processesValidRecord() throws IOException, InterruptedException {
Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +
// Year AMAA
"99999V0203201N00261220001CN9999999N9-00111+99999999999") ;
// Temperature """ 4
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper())
.withInput(new LongWritable(0), value)
.withOutput(new Text("1950"), new IntWritable(-11))
.runTest();

3
}

The idea of the test is very simple: pass a weather record as input to the mapper, and
check that the output is the year and temperature reading.

Since we are testing the mapper, we use MRUnit’s MapDriver, which we configure with
the mapper under test (MaxTemperatureMapper), the input key and value, and the ex-
pected output key (a Text object representing the year, 1950) and expected output value
(an IntWritable representing the temperature, —1.1°C), before finally calling the
runTest() method to execute the test. If the expected output values are not emitted by
the mapper, MRUnit will fail the test. Notice that the input key could be set to any value
because our mapper ignores it.

Proceeding in a test-driven fashion, we create a Mapper implementation that passes the
test (see Example 6-6). Because we will be evolving the classes in this chapter, each is
put in a different package indicating its version for ease of exposition. For example,
vl.MaxTemperatureMapper is version 1 of MaxTemperatureMapper. In reality, of course,
you would evolve classes without repackaging them.

Example 6-6. First version of a Mapper that passes MaxTemperatureMapperTest

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {
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public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();
String year = line.substring(15, 19);
int airTemperature = Integer.parseInt(line.substring(87, 92));
context.write(new Text(year), new IntWritable(airTemperature));
}
}

This is a very simple implementation that pulls the year and temperature fields from
the line and writes them to the Context. Let’s add a test for missing values, which in the
raw data are represented by a temperature of +9999:

public void ignoresMissingTemperatureRecord() throws IOException,

InterruptedException {

Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +

// Year AAN
"99999V0203201N00261220001CN9999999N9+99991+99999999999" ) ;
// Temperature """

new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper())
.withInput(new LongWritable(0), value)
.runTest();

}

A MapDriver can be used to check for zero, one, or more output records, according to
the number of times that withOutput() is called. In our application, since records with
missing temperatures should be filtered out, this test asserts that no output is produced
for this particular input value.

The new test fails since +9999 is not treated as a special case. Rather than putting more
logic into the mapper, it makes sense to factor out a parser class to encapsulate the
parsing logic; see Example 6-7.

Example 6-7. A class for parsing weather records in NCDC format

public class NcdcRecordParser {
private static final int MISSING_TEMPERATURE = 9999;

private String year;
private int airTemperature;
private String quality;

public void parse(String record) {
year = record.substring(15, 19);
String airTemperatureString;
// Remove leading plus sign as parselnt doesn't like them (pre-Java 7)
if (record.charAt(87) == '+') {
airTemperatureString = record.substring(88, 92);
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} else {
airTemperatureString = record.substring(87, 92);

}
airTemperature = Integer.parselnt(airTemperatureString);
quality = record.substring(92, 93);

3

public void parse(Text record) {
parse(record.toString());

3

public boolean isValidTemperature() {
return airTemperature != MISSING_TEMPERATURE && quality.matches("[01459]");

3

public String getYear() {
return year;

3

public int getAirTemperature() {
return airTemperature;
}
}

The resulting mapper (version 2) is much simpler (see Example 6-8). It just calls the
parser’s parse() method, which parses the fields of interest from a line of input, checks
whether a valid temperature was found using the isValidTemperature() query meth-
od, and, if it was, retrieves the year and the temperature using the getter methods on
the parser. Notice that we check the quality status field as well as checking for missing
temperatures in isValidTemperature(), to filter out poor temperature readings.

Another benefit of creating a parser class is that it makes it easy to
write related mappers for similar jobs without duplicating code. It also
gives us the opportunity to write unit tests directly against the pars-
er, for more targeted testing.

Example 6-8. A Mapper that uses a utility class to parse records

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private NcdcRecordParser parser = new NcdcRecordParser();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
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context.write(new Text(parser.getYear()),
new IntWritable(parser.getAirTemperature()));

}
3
}

With the tests for the mapper now passing, we move on to writing the reducer.

Reducer

The reducer has to find the maximum value for a given key. Here’s a simple test for this
feature, which uses a ReduceDriver:

public void returnsMaximumIntegerInValues() throws IOException,

InterruptedException {
new ReduceDriver<Text, IntWritable, Text, IntWritable>()
.withReducer(new MaxTemperatureReducer())
.withInput(new Text("1950"),
Arrays.asList(new IntWritable(10), new IntWritable(5)))

.withOutput(new Text("1950"), new IntWritable(10))
.runTest();

}

We construct a list of some IntWritable values and then verify that
MaxTemperatureReducer picks the largest. The code in Example 6-9 is for an imple-
mentation of MaxTemperatureReducer that passes the test.

Example 6-9. Reducer for the maximum temperature example

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

Running Locally on Test Data

Now that we have the mapper and reducer working on controlled inputs, the next step
is to write a job driver and run it on some test data on a development machine.
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Running a Job in a Local Job Runner

Using the Tool interface introduced earlier in the chapter, it’s easy to write a driver to
run our MapReduce job for finding the maximum temperature by year (see
MaxTemperatureDriver in Example 6-10).

Example 6-10. Application to find the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;

}

Job job = new Job(getConf(), "Max temperature");
job.setJarByClass(getClass());

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
System.exit(exitCode);
}
}

MaxTemperatureDriver implements the Tool interface, so we get the benefit of being
able to set the options that GenericOptionsParser supports. The run() method con-
structs a Job object based on the tool’s configuration, which it uses to launch a job.
Among the possible job configuration parameters, we set the input and output file paths;
the mapper, reducer, and combiner classes; and the output types (the input types are
determined by the input format, which defaults to TextInputFormat and has Longhrit
able keys and Text values). It’s also a good idea to set a name for the job (Max temper
ature) so that you can pick it out in the job list during execution and after it has
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completed. By default, the name is the name of the JAR file, which normally is not
particularly descriptive.

Now we can run this application against some local files. Hadoop comes with a local
job runner, a cut-down version of the MapReduce execution engine for running Map-
Reduce jobs in a single JVM. It’s designed for testing and is very convenient for use in
an IDE, since you can run it in a debugger to step through the code in your mapper and
reducer.

The local job runner is used if mapreduce. framework. name is set to local, which is the
default.!

From the command line, we can run the driver by typing:

% mvn compile

% export HADOOP_CLASSPATH=target/classes/

% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \
input/ncdc/micro output

Equivalently, we could use the - fs and - jt options provided by GenericOptionsParser:
% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro output

This command executes MaxTemperatureDriver using input from the local input/ncdc/
micro directory, producing output in the local output directory. Note that although we've
set - f's so we use the local filesystem (file:///), the local job runner will actually work
fine against any filesystem, including HDFS (and it can be handy to do this if you have
a few files that are on HDEFS).

We can examine the output on the local filesystem:

% cat output/part-r-00000

1949 111
1950 22
Testing the Driver

Apart from the flexible configuration options offered by making your application im-
plement Tool, you also make it more testable because it allows you to inject an arbitrary
Configuration. You can take advantage of this to write a test that uses a local job runner
to run a job against known input data, which checks that the output is as expected.

There are two approaches to doing this. The first is to use the local job runner and run
the job against a test file on the local filesystem. The code in Example 6-11 gives an idea
of how to do this.

1. In Hadoop 1, mapred. job.tracker determines the means of execution: local for the local job runner, or
a colon-separated host and port pair for a jobtracker address.
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Example 6-11. A test for MaxTemperatureDriver that uses a local, in-process job
runner

public void test() throws Exception {
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "file:///");
conf.set("mapreduce.framework.name", "local");
conf.setInt("mapreduce.task.io.sort.mb", 1);

Path input = new Path("input/ncdc/micro");
Path output = new Path("output");

FileSystem fs = FileSystem.getlLocal(conf);
fs.delete(output, true); // delete old output

MaxTemperatureDriver driver = new MaxTemperatureDriver();
driver.setConf(conf);

int exitCode = driver.run(new String[] {
input.toString(), output.toString() });
assertThat(exitCode, 1s(0));

checkOutput(conf, output);
}

The test explicitly sets fs.defaultFS and mapreduce.framework.name so it uses the
local filesystem and the local job runner. It then runs the MaxTemperatureDriver via its
Tool interface against a small amount of known data. At the end of the test, the check
Output() method is called to compare the actual output with the expected output, line
by line.

The second way of testing the driver is to run it using a “mini-" cluster. Hadoop has a
set of testing classes, called MiniDFSCluster, MiniMRCluster, and MiniYARNCluster,
that provide a programmatic way of creating in-process clusters. Unlike the local job
runner, these allow testing against the full HDFS, MapReduce, and YARN machinery.
Bear in mind, too, that node managers in a mini-cluster launch separate JVMs to run
tasks in, which can make debugging more difficult.

You can run a mini-cluster from the command line too, with the
following:

% hadoop jar \
SHADOOP_HOME /share/hadoop/mapreduce/hadoop-mapreduce-*-tests.jar \
minicluster

Mini-clusters are used extensively in Hadoop’s own automated test suite, but they can
be used for testing user code, too. Hadoop’s ClusterMapReduceTestCase abstract class
provides a useful base for writing such a test, handles the details of starting and stopping
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the in-process HDEFS and YARN clusters in its setUp() and tearDown() methods, and
generates a suitable Configuration object that is set up to work with them. Subclasses
need only populate data in HDFES (perhaps by copying from a local file), run a MapRe-
duce job, and confirm the output is as expected. Refer to the MaxTemperatureDriver
MiniTest class in the example code that comes with this book for the listing.

Tests like this serve as regression tests, and are a useful repository of input edge cases
and their expected results. As you encounter more test cases, you can simply add them
to the input file and update the file of expected output accordingly.

Running on a Cluster

Now that we are happy with the program running on a small test dataset, we are ready
to try it on the full dataset on a Hadoop cluster. Chapter 10 covers how to set up a fully
distributed cluster, although you can also work through this section on a pseudo-
distributed cluster.

Packaging a Job

The local job runner uses a single JVM to run a job, so as long as all the classes that your
job needs are on its classpath, then things will just work.

In a distributed setting, things are a little more complex. For a start, a job’s classes must
be packaged into a job JAR file to send to the cluster. Hadoop will find the job JAR
automatically by searching for the JAR on the driver’s classpath that contains the class
set in the setJarByClass() method (on JobConf or Job). Alternatively, if you want to
set an explicit JAR file by its file path, you can use the setJar () method. (The JAR file
path may be local or an HDFS file path.)

Creating a job JAR file is conveniently achieved using a build tool such as Ant or Maven.
Given the POM in Example 6-3, the following Maven command will create a JAR file
called hadoop-examples.jar in the project directory containing all of the compiled
classes:

% mvn package -DskipTests

If you have a single job per JAR, you can specify the main class to run in the JAR file’s
manifest. If the main class is not in the manifest, it must be specified on the command
line (as we will see shortly when we run the job).

Any dependent JAR files can be packaged in a [ib subdirectory in the job JAR file, al-
though there are other ways to include dependencies, discussed later. Similarly, resource
files can be packaged in a classes subdirectory. (This is analogous to a Java Web appli-
cation archive, or WAR, file, except in that case the JAR files go in a WEB-INF/lib
subdirectory and classes go in a WEB-INF/classes subdirectory in the WAR file.)
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The client classpath

The user’s client-side classpath set by hadoop jar <jar>is made up of:

o The job JAR file
 Any JAR files in the [ib directory of the job JAR file, and the classes directory (if
present)

o The classpath defined by HADOOP_CLASSPATH, if set

Incidentally, this explains why you have to set HADOOP_CLASSPATH to point to dependent
classes and libraries if you are running using the local job runner without a job JAR
(hadoop CLASSNAME).

The task classpath

On a cluster (and this includes pseudodistributed mode), map and reduce tasks run in
separate JVMs, and their classpaths are not controlled by HADOOP_CLASSPATH.
HADOOP_CLASSPATH is a client-side setting and only sets the classpath for the driver JVM,
which submits the job.

Instead, the user’s task classpath is comprised of the following:

o The job JAR file

o Any JAR files contained in the lib directory of the job JAR file, and the classes
directory (if present)

o Any files added to the distributed cache using the -1ibjars option (see Table 6-1),
or the addFileToClassPath() method on DistributedCache (old API), or Job
(new API)

Packaging dependencies

Given these different ways of controlling what is on the client and task classpaths, there
are corresponding options for including library dependencies for a job:

o Unpack the libraries and repackage them in the job JAR.
o Package the libraries in the [ib directory of the job JAR.

o Keep the libraries separate from the job JAR, and add them to the client classpath
via HADOOP_CLASSPATH and to the task classpath via -1ibjars.

The last option, using the distributed cache, is simplest from a build point of view
because dependencies don’t need rebundling in the job JAR. Also, using the distributed
cache can mean fewer transfers of JAR files around the cluster, since files may be cached
on a node between tasks. (You can read more about the distributed cache on page 274.)
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Task classpath precedence

User JAR files are added to the end of both the client classpath and the task classpath,
which in some cases can cause a dependency conflict with Hadoop’s built-in libraries if
Hadoop uses a different, incompatible version of a library that your code uses. Some-
times you need to be able to control the task classpath order so that your classes are
picked up first. On the client side, you can force Hadoop to put the user classpath first
in the search order by setting the HADOOP_USER_CLASSPATH_FIRST environment variable
to true. For the task classpath, you can set mapreduce. job.user.classpath.first to
true. Note that by setting these options you change the class loading for Hadoop
framework dependencies (but only in your job), which could potentially cause the job
submission or task to fail, so use these options with caution.

Launching a Job

To launch the job, we need to run the driver, specifying the cluster that we want to run
the job on with the -conf option (we equally could have used the -fs and - jt options):

% unset HADOOP_CLASSPATH
% hadoop jar hadoop-examples.jar v2.MaxTemperatureDriver \
-conf conf/hadoop-cluster.xml input/ncdc/all max-temp

We unset the HADOOP_CLASSPATH environment variable because we
don’t have any third-party dependencies for this job. If it were left
set to target/classes/ (from earlier in the chapter), Hadoop

\ wouldn’t be able to find the job JAR; it would load the MaxTempera
tureDriver class from target/classes rather than the JAR, and the job
would fail.

The waitForCompletion() method on Job launches the job and polls for progress,
writing a line summarizing the map and reduce’s progress whenever either changes.
Here’s the output (some lines have been removed for clarity):

14/09/12 06:38:11 INFO input.FileInputFormat: Total input paths to process : 101
14/09/12 06:38:11 INFO impl.YarnClientImpl: Submitted application
application_1410450250506_0003

14/09/12 06:38:12 INFO mapreduce.Job: Running job: job_1410450250506_0003
14/09/12 06:38:26 INFO mapreduce.Job: map 0% reduce 0%

14/09/12 06:45:24 INFO mapreduce.Job: map 100% reduce 100%
14/09/12 06:45:24 INFO mapreduce.Job: Job job_1410450250506_0003 completed
successfully
14/09/12 06:45:24 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=93995
FILE: Number of bytes written=10273563
FILE: Number of read operations=0
FILE: Number of large read operations=0
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FILE: Number of write operations=0
HDFS: Number of bytes read=33485855415
HDFS: Number of bytes written=904
HDFS: Number of read operations=327
HDFS: Number of large read operations=0
HDFS: Number of write operations=16
Job Counters
Launched map tasks=101
Launched reduce tasks=8
Data-local map tasks=101
Total time spent by all maps in occupied slots (ms)=5954495
Total time spent by all reduces in occupied slots (ms)=74934
Total time spent by all map tasks (ms)=5954495
Total time spent by all reduce tasks (ms)=74934
Total vcore-seconds taken by all map tasks=5954495
Total vcore-seconds taken by all reduce tasks=74934
Total megabyte-seconds taken by all map tasks=6097402880
Total megabyte-seconds taken by all reduce tasks=76732416
Map-Reduce Framework
Map input records=1209901509
Map output records=1143764653
Map output bytes=10293881877
Map output materialized bytes=14193
Input split bytes=14140
Combine input records=1143764772
Combine output records=234
Reduce input groups=100
Reduce shuffle bytes=14193
Reduce input records=115
Reduce output records=100
Spilled Records=379
Shuffled Maps =808
Failed Shuffles=0
Merged Map outputs=808
GC time elapsed (ms)=101080
CPU time spent (ms)=5113180
Physical memory (bytes) snapshot=60509106176
Virtual memory (bytes) snapshot=167657209856
Total committed heap usage (bytes)=68220878848
Shuffle Errors
BAD_ID=0
CONNECTION=0
I0_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=33485841275
File Output Format Counters
Bytes Written=90
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The output includes more useful information. Before the job starts, its ID is printed;
this is needed whenever you want to refer to the job—in logfiles, for example—or when
interrogating it via the mapred job command. When the job is complete, its statistics
(known as counters) are printed out. These are very useful for confirming that the job
did what you expected. For example, for this job, we can see that 1.2 billion records were
analyzed (“Map input records”), read from around 34 GB of compressed files on HDFS
(“HDFS: Number of bytes read”). The input was broken into 101 gzipped files of rea-
sonable size, so there was no problem with not being able to split them.

You can find out more about what the counters mean in “Built-in Counters” on page 247.

Job, Task, and Task Attempt IDs

In Hadoop 2, MapReduce job IDs are generated from YARN application IDs that are
created by the YARN resource manager. The format of an application ID is composed
of the time that the resource manager (not the application) started and an incrementing
counter maintained by the resource manager to uniquely identify the application to that
instance of the resource manager. So the application with this ID:

application_1410450250506_0003

is the third (0003; application IDs are 1-based) application run by the resource manager,
which started at the time represented by the timestamp 1410450250506. The counter is
formatted with leading zeros to make IDs sort nicely—in directory listings, for example.
However, when the counter reaches 10000, it is not reset, resulting in longer application
IDs (which don’t sort so well).

The corresponding job ID is created simply by replacing the application prefix of an
application ID with a job prefix:

job_1410450250506_0003

Tasks belong to a job, and their IDs are formed by replacing the job prefix of a job ID
with a task prefix and adding a suffix to identify the task within the job. For example:

task_1410450250506_0003_m_000003

is the fourth (000003; task IDs are 0-based) map (m) task of the job with ID
job_1410450250506_0003. The task IDs are created for a job when it is initialized, so
they do not necessarily dictate the order in which the tasks will be executed.

Tasks may be executed more than once, due to failure (see “Task Failure” on page 193) or
speculative execution (see “Speculative Execution” on page 204), so to identify different
instances of a task execution, task attempts are given unique IDs. For example:

attempt_1410450250506_0003_m_000003_0
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is the first (0; attempt IDs are O0-based) attempt at running task
task_1410450250506_0003_m_000003. Task attempts are allocated during the job run
as needed, so their ordering represents the order in which they were created to run.

The MapReduce Web Ul

Hadoop comes with a web UI for viewing information about your jobs. It is useful for
following a job’s progress while it is running, as well as finding job statistics and logs
after the job has completed. You can find the Ul at http://resource-manager -host:
8088/.

The resource manager page

A screenshot of the home page is shown in Figure 6-1. The “Cluster Metrics” section
gives a summary of the cluster. This includes the number of applications currently run-
ning on the cluster (and in various other states), the number of resources available on
the cluster (“Memory Total”), and information about node managers.

z Logged in as: dr.who
(e hacoep, All Applications
~ Cluster Cluster Metrics
About Apps Apps Apps Apps Containers ~ Memory ~Memory  Memory Active  Decommissioned  Lost  Unhealthy  Rebooted
Nodes Submitted  Pending = Running Completed ~ Running Used Total Reserved  Nodes Nodes o Nodes os
Applications 3 0 1 2 16 16GB  1682GB 0B 4 [ [ '} [
User Metrics for dr.who
NEW_SAVING
SUBMITTED Apps Apps Apps Apps Containers Containers Containers Memory Memory Memo
ACCEPTED Submitted Pending Running Completed Running Pending Reserved Used Pending Reserved
RUNNING 0 o 1 2 o 0 o 0B 0B 0B
FINISHED
FAILED Show 20 ¢ entries Search:
KILER User Application  Queue  StartTime FinishTime FinalStatus
Scheduler ] © T Name o ARECHIOD > X 7 Sate ¢ % Progress ¢ TrackigUl ¢
application 1410450250506 0003 ec2- Max MAPREDUCE root.ec2- Fri,12  N/A RUNNING UNDEFINED ApplicationMaster
» Tools user temperature user Sep 2014
10:38:11
GMT
application 1410450250506 0002 ec2- Max MAPREDUCE rootec2- Fri,12  Fri,12Sep FINISHED SUCCEEDED History
user temperature user Sep 2014 2014
10:27:23  10:34:36
GMT GMT
application 1410450250506 0001 ec2- distcp MAPREDUCE rootec2- Fri,12  Fri,128ep FINISHED SUCCEEDED History
user Sep 2014 2014
08:47:09  08:52:56
GMT GMT
Showing 1 to 3 of 3 entries

Figure 6-1. Screenshot of the resource manager page

The main table shows all the applications that have run or are currently running on the
cluster. There is a search box that is useful for filtering the applications to find the ones
you are interested in. The main view can show up to 100 entries per page, and the
resource manager will keep up to 10,000 completed applications in memory at a time
(set by yarn.resourcemanager.max-completed-applications), before they are only
available from the job history page. Note also that the job history is persistent, so you
can find jobs there from previous runs of the resource manager, too.
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Job History

Job history refers to the events and configuration for a completed MapReduce job. It is
retained regardless of whether the job was successful, in an attempt to provide useful
information for the user running a job.

Job history files are stored in HDFS by the MapReduce application master, in a directory
set by the mapreduce. jobhistory.done-dir property. Job history files are kept for one
week before being deleted by the system.

The history log includes job, task, and attempt events, all of which are stored in a file in
JSON format. The history for a particular job may be viewed through the web UI for
the job history server (which is linked to from the resource manager page) or via the
command line using mapred job -history (which you point at the job history file).

The MapReduce job page

Clicking on the link for the “Tracking UT” takes us to the application master’s web UI
(or to the history page if the application has completed). In the case of MapReduce, this
takes us to the job page, illustrated in Figure 6-2.

Z . Logged in as: dr.who
("
% acioED, MapReduce Job
job_1410450250506_0003
+ Cluster Job Overview
+ Application Job Name: Max temperature
pp State: RUNNING

- Job Uberized: false

Overview Started: Fri Sep 12 06:38:24 EDT 2014

Counters Elapsed: 6mins, 25sec

Configuration

Map tasks ApplicationMaster

Reduce tasks Attempt Number Start Time Node Logs

AM Logs 1 Fri Sep 12 06:38:19 EDT 2014 ip-10-1-1-172.ec2.internal:8042 logs
» Tools Task Type Progress Total Pending Running Complete

Map 101 25 14 62
Reduce 8 8 0 0
Attempt Type New Running Failed Killed Successful
Maps 25 14 0 Q g2
Reduces 8 a 1] 0 Q

Figure 6-2. Screenshot of the job page

While the job is running, you can monitor its progress on this page. The table at the
bottom shows the map progress and the reduce progress. “Total” shows the total number
of map and reduce tasks for this job (a row for each). The other columns then show the
state of these tasks: “Pending” (waiting to run), “Running,” or “Complete” (successfully
run).
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The lower part of the table shows the total number of failed and killed task attempts for
the map or reduce tasks. Task attempts may be marked as killed if they are speculative
execution duplicates, if the node they are running on dies, or if they are killed by a user.
See “Task Failure” on page 193 for background on task failure.

There also are a number of useful links in the navigation. For example, the “Configu-
ration” link is to the consolidated configuration file for the job, containing all the prop-
erties and their values that were in effect during the job run. If you are unsure of what
a particular property was set to, you can click through to inspect the file.

Retrieving the Results

Once the job is finished, there are various ways to retrieve the results. Each reducer
produces one output file, so there are 30 part files named part-r-00000 to part-
r-00029 in the max-temp directory.

As their names suggest, a good way to think of these “part” files is as
parts of the max-temp “file”

If the output is large (which it isn’'t in this case), it is important to have
multiple parts so that more than one reducer can work in parallel.
Usually, if a file is in this partitioned form, it can still be used easily
enough—as the input to another MapReduce job, for example. In
some cases, you can exploit the structure of multiple partitions to do
a map-side join, for example (see “Map-Side Joins” on page 269).

This job produces a very small amount of output, so it is convenient to copy it from
HDES to our development machine. The -getmerge option to the hadoop fscommand
is useful here, as it gets all the files in the directory specified in the source pattern and
merges them into a single file on the local filesystem:

% hadoop fs -getmerge max-temp max-temp-local
% sort max-temp-local | tail

1991 607
1992 605
1993 567
1994 568
1995 567
1996 561
1997 565
1998 568
1999 568
2000 558

We sorted the output, as the reduce output partitions are unordered (owing to the hash
partition function). Doing a bit of postprocessing of data from MapReduce is very
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common, as is feeding it into analysis tools such as R, a spreadsheet, or even a relational
database.

Another way of retrieving the output if it is small is to use the -cat option to print the
output files to the console:

% hadoop fs -cat max-temp/*

On closer inspection, we see that some of the results don’t look plausible. For instance,
the maximum temperature for 1951 (not shown here) is 590°C! How do we find out
what’s causing this? Is it corrupt input data or a bug in the program?

Debugging a Job

The time-honored way of debugging programs is via print statements, and this is cer-
tainly possible in Hadoop. However, there are complications to consider: with programs
running on tens, hundreds, or thousands of nodes, how do we find and examine the
output of the debug statements, which may be scattered across these nodes? For this
particular case, where we are looking for (what we think is) an unusual case, we can use
adebug statement to log to standard error, in conjunction with updating the task’s status
message to prompt us to look in the error log. The web UI makes this easy, as we pass:
[will see].

We also create a custom counter to count the total number of records with implausible
temperatures in the whole dataset. This gives us valuable information about how to deal
with the condition. If it turns out to be a common occurrence, we might need to learn
more about the condition and how to extract the temperature in these cases, rather than
simply dropping the records. In fact, when trying to debug a job, you should always ask
yourself if you can use a counter to get the information you need to find out what's
happening. Even if you need to use logging or a status message, it may be useful to use
a counter to gauge the extent of the problem. (There is more on counters in “Coun-
ters” on page 247.)

If the amount of log data you produce in the course of debugging is large, you have a
couple of options. One is to write the information to the map’s output, rather than to
standard error, for analysis and aggregation by the reduce task. This approach usually
necessitates structural changes to your program, so start with the other technique first.
The alternative is to write a program (in MapReduce, of course) to analyze the logs
produced by your job.

We add our debugging to the mapper (version 3), as opposed to the reducer, as we want
to find out what the source data causing the anomalous output looks like:

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

enum Temperature {
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OVER_100
}

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
if (airTemperature > 1000) {
System.err.println("Temperature over 100 degrees for input: " + value);
context.setStatus("Detected possibly corrupt record: see logs.");
context.getCounter(Temperature.OVER_100).1increment(1);

}

context.write(new Text(parser.getYear()), new IntWritable(airTemperature));
}
}
}

If the temperature is over 100°C (represented by 1000, because temperatures are in
tenths of a degree), we print a line to standard error with the suspect line, as well as
updating the map’s status message using the setStatus() method on Context, directing
us to look in the log. We also increment a counter, which in Java is represented by a field
of an enum type. In this program, we have defined a single field, OVER_100, as a way to
count the number of records with a temperature of over 100°C.

With this modification, we recompile the code, re-create the JAR file, then rerun the job
and, while it's running, go to the tasks page.

The tasks and task attempts pages

The job page has a number of links for viewing the tasks in a job in more detail. For
example, clicking on the “Map” link brings us to a page that lists information for all of
the map tasks. The screenshot in Figure 6-3 shows this page for the job run with our
debugging statements in the “Status” column for the task.
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‘@hada@p Map Tasks for job_1410450250506_0006 '

» Cluster Show 20  entries Search: corrupt

» Application Task - Progress & Status ©  State & Start Time & Finish Time 7 Elapsed Time 7
~ Job task 1410450250506 0006 m_000032 Detected RUNNING ~ Fri, 12 Sep 2014 N/A Amins, 7sec
possibly corrupt 11:35:37 GMT
record: see
logs. > map
task 0006_m_000041 Detected RUNNING  Fri, 12 Sep 2014 N/A 48sec

Overview
Counters
¢

Map tasks possibly corrupt 11:35:56 GMT
Reduce tasks record: see
AM Logs logs. > map

task 1410450250506 0006 _m_000044 Detected RUNNING ~ Fri, 12 Sep 2014 NIA 33sec
» Tools possibly corrupt 11:36:11 GMT
record: see
logs. > map

Showing 1 to 3 of 3 entries (filtered from 101 total entries)

Figure 6-3. Screenshot of the tasks page

Clicking on the task link takes us to the task attempts page, which shows each task
attempt for the task. Each task attempt page has links to the logfiles and counters. If we
follow one of the links to the logfiles for the successful task attempt, we can find the
suspect input record that we logged (the line is wrapped and truncated to fit on the

page):

Temperature over 100 degrees for input:
0335999999433181957042302005+37950+139117SA0 +0004RISN V02011359003150070356999
999433201957010100005+35317+139650SA0 +000899999V02002359002650076249N0040005. . .

This record seems to be in a different format from the others. For one thing, there are
spaces in the line, which are not described in the specification.

When the job has finished, we can look at the value of the counter we defined to see
how many records over 100°C there are in the whole dataset. Counters are accessible
via the web UI or the command line:

% mapred job -counter job_1410450250506_0006 \
'v3.MaxTemperatureMapper$Temperature' OVER_100
3

The - counter option takes the job ID, counter group name (which is the fully qualified
classname here), and counter name (the enum name). There are only three malformed
records in the entire dataset of over a billion records. Throwing out bad records is
standard for many big data problems, although we need to be careful in this case because
we are looking for an extreme value—the maximum temperature rather than an aggre-
gate measure. Still, throwing away three records is probably not going to change the
result.

Handling malformed data

Capturing input data that causes a problem is valuable, as we can use it in a test to check
that the mapper does the right thing. In this MRUnit test, we check that the counter is
updated for the malformed input:
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public void parsesMalformedTemperature() throws IOException,
InterruptedException {
Text value = new Text("0335999999433181957042302005+37950+139117SA0 +0004" +
// Year AAAA
"RISN V02011359003150070356999999433201957010100005+353");
// Temperature "/A"\
Counters counters = new Counters();
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper())
.withInput(new LongWritable(0), value)
.withCounters(counters)
.runTest();
Counter c = counters.findCounter(MaxTemperatureMapper.Temperature.MALFORMED);
assertThat(c.getValue(), is(1L));
}

The record that was causing the problem is of a different format than the other lines
we've seen. Example 6-12 shows a modified program (version 4) using a parser that
ignores each line with a temperature field that does not have a leading sign (plus or
minus). We've also introduced a counter to measure the number of records that we are
ignoring for this reason.

Example 6-12. Mapper for the maximum temperature example

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

enum Temperature {
MALFORMED
}

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
context.write(new Text(parser.getYear()), new IntWritable(airTemperature));
} else if (parser.isMalformedTemperature()) {
System.err.println("Ignoring possibly corrupt input:
context.getCounter(Temperature.MALFORMED).increment(1);
}
}

+ value);
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Hadoop Logs

Hadoop produces logs in various places, and for various audiences. These are sum-
marized in Table 6-2.

Table 6-2. Types of Hadoop logs

Primary audience Description Further

information

System daemon logs Administrators Each Hadoop daemon produces a logfile (using “System logfiles”
log4j) and another file that combines standard out  on page 295 and
and error. Written in the directory defined by the “Logging” on page

HADOOP_LOG_DIR environment variable. 330

HDFS audit logs Administrators A log of all HDFS requests, turned off by default. “Audit Logging” on
Written to the namenode’s log, although this is page 324
configurable.

MapReduce job history logs  Users A log of the events (such as task completion) that  “Job History” on
occur in the course of running a job. Saved centrally  page 166
in HDFS.

MapReduce task logs Users Each task child process produces a logfile using log4j  This section

(called syslog), a file for data sent to standard out
(stdout), and a file for standard error (stderr).
Written in the userlogs subdirectory of the
directory defined by the YARN_LOG_DIR
environment variable.

YARN has a service for log aggregation that takes the task logs for completed applications
and moves them to HDFS, where they are stored in a container file for archival purposes.
If this service is enabled (by setting yarn.log-aggregation-enable to true on the
cluster), then task logs can be viewed by clicking on the logs link in the task attempt web
UL or by using the mapred job -logs command.

By default, log aggregation is not enabled. In this case, task logs can be retrieved by
visiting the node manager’s web UI at http://node -manager -host:8042/logs/userlogs.

It is straightforward to write to these logfiles. Anything written to standard output or
standard error is directed to the relevant logfile. (Of course, in Streaming, standard
output is used for the map or reduce output, so it will not show up in the standard output
log.)

In Java, you can write to the task’s syslog file if you wish by using the Apache Commons
Logging API (or indeed any logging API that can write to log4j). This is shown in
Example 6-13.
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Example 6-13. An identity mapper that writes to standard output and also uses the
Apache Commons Logging API

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.mapreduce.Mapper;

public class LoggingIdentityMapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

private static final Log LOG = LogFactory.getLog(LoggingIdentityMapper.class);

("unchecked")
public void map(KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException {
// Log to stdout file
System.out.println("Map key:

+ key);

// Log to syslog file

LOG.info("Map key: " + key);

if (LOG.isDebugEnabled()) {
LOG.debug("Map value: " + value);

}
context.write((KEYOUT) key, (VALUEOUT) value);

}
}

The default log level is INFO, so DEBUG-level messages do not appear in the syslog task
logfile. However, sometimes you want to see these messages. To enable this, set mapre
duce.map.log.level or mapreduce.reduce.log. level, as appropriate. For example,
in this case, we could set it for the mapper to see the map values in the log as follows:

% hadoop jar hadoop-examples.jar LoggingDriver -conf conf/hadoop-cluster.xml \
-D mapreduce.map.log.level=DEBUG input/ncdc/sample.txt logging-out

There are some controls for managing the retention and size of task logs. By default,
logs are deleted after a minimum of three hours (you can set this using the
yarn.nodemanager.log.retain-seconds property, although this is ignored if log ag-
gregation is enabled). You can also set a cap on the maximum size of each logfile using
themapreduce. task.userlog. limit.kb property, which is 0 by default, meaning there
is no cap.

Sometimes you may need to debug a problem that you suspect is
occurring in the JVM running a Hadoop command, rather than on
the cluster. You can send DEBUG-level logs to the console by using an
invocation like this:

% HADOOP_ROOT_LOGGER=DEBUG,console hadoop fs -text /foo/bar
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Remote Debugging

When a task fails and there is not enough information logged to diagnose the error, you
may want to resort to running a debugger for that task. This is hard to arrange when
running the job on a cluster, as you don’t know which node is going to process which
part of the input, so you can't set up your debugger ahead of the failure. However, there
are a few other options available:

Reproduce the failure locally
Often the failing task fails consistently on a particular input. You can try to repro-
duce the problem locally by downloading the file that the task is failing on and
running the job locally, possibly using a debugger such as Java’s Visual VM.

Use JVM debugging options

A common cause of failure is a Java out of memory error in the task JVM. You can
set mapred.child. java.opts to include -XX:-HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/path/to/dumps. This setting produces a heap dump that can
be examined afterward with tools such as jhat or the Eclipse Memory Analyzer.
Note that the JVM options should be added to the existing memory settings speci-
fied by mapred.child. java.opts. These are explained in more detail in “Memory
settings in YARN and MapReduce” on page 301.

Use task profiling
Java profilers give a lot of insight into the JVM, and Hadoop provides a mechanism
to profile a subset of the tasks in a job. See “Profiling Tasks” on page 175.

In some cases, it’s useful to keep the intermediate files for a failed task attempt for later
inspection, particularly if supplementary dump or profile files are created in the task’s
working directory. You can set mapreduce.task.files.preserve.failedtasks to
true to keep a failed task’s files.

You can keep the intermediate files for successful tasks, too, which may be handy if you
want to examine a task that isn’'t failing. In this case, set the property mapre
duce.task.files.preserve.filepatterntoaregular expression that matches the IDs
of the tasks whose files you want to keep.

Another useful property for debugging is yarn.nodemanager.delete.debug-delay-
sec, which is the number of seconds to wait to delete localized task attempt files, such
as the script used to launch the task container JVM. If this is set on the cluster to a
reasonably large value (e.g., 600 for 10 minutes), then you have enough time to look at
the files before they are deleted.

To examine task attempt files, log into the node that the task failed on and look for the
directory for that task attempt. It will be under one of the local MapReduce directories,
as set by the mapreduce.cluster.local.dir property (covered in more detail in “Im-
portant Hadoop Daemon Properties” on page 296). If this property is a comma-separated
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list of directories (to spread load across the physical disks on a machine), you may need
to look in all of the directories before you find the directory for that particular task
attempt. The task attempt directory is in the following location:

mapreduce.cluster. local.dir/usercache/user/appcache/application-ID/output
[ task-attempt-ID

TuningaJob

After a job is working, the question many developers ask is, “Can I make it run faster?”

There are a few Hadoop-specific “usual suspects” that are worth checking to see whether
they are responsible for a performance problem. You should run through the checklist
in Table 6-3 before you start trying to profile or optimize at the task level.

Table 6-3. Tuning checklist

Area Best practice Further information

Number of mappers  How long are your mappers running for? If they are only running fora  “Small files and
few seconds on average, you should see whether there’s a way to CombineFilelnputFormat” on
have fewer mappers and make them all run longer—a minute or so,  page 226
as a rule of thumb. The extent to which this is possible depends on
the input format you are using.

Number of reducers ~ Check that you are using more than a single reducer. Reduce tasks “Choosing the Number of
should run for five minutes or so and produce at least a block’s worth ~ Reducers” on page 217
of data, as a rule of thumb.

Combiners Check whether your job can take advantage of a combiner to reduce ~ “Combiner Functions” on page
the amount of data passing through the shuffle. 34
Intermediate Job execution time can almost always benefit from enabling map “Compressing map output” on
compression output compression. page 108
Custom serialization  If you are using your own custom Writable objects or custom “Implementing a
comparators, make sure you have implemented RawComparator.  RawComparator for speed” on
page 123
Shuffle tweaks The MapReduce shuffle exposes around a dozen tuning parameters for  “Configuration Tuning” on page
memory management, which may help you wring out the last bit of 201
performance.

Profiling Tasks

Like debugging, profiling a job running on a distributed system such as MapReduce
presents some challenges. Hadoop allows you to profile a fraction of the tasks in a job
and, as each task completes, pulls down the profile information to your machine for
later analysis with standard profiling tools.

Of course, it’s possible, and somewhat easier, to profile a job running in the local job
runner. And provided you can run with enough input data to exercise the map and
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reduce tasks, this can be a valuable way of improving the performance of your mappers
and reducers. There are a couple of caveats, however. The local job runner is a very
different environment from a cluster, and the data flow patterns are very different. Op-
timizing the CPU performance of your code may be pointless if your MapReduce job
is I/O-bound (as many jobs are). To be sure that any tuning is effective, you should
compare the new execution time with the old one running on a real cluster. Even this
is easier said than done, since job execution times can vary due to resource contention
with other jobs and the decisions the scheduler makes regarding task placement. To get
a good idea of job execution time under these circumstances, perform a series of runs
(with and without the change) and check whether any improvement is statistically
significant.

It’s unfortunately true that some problems (such as excessive memory use) can be re-
produced only on the cluster, and in these cases the ability to profile in situ is
indispensable.

The HPROF profiler

There are a number of configuration properties to control profiling, which are also
exposed via convenience methods on JobConf. Enabling profiling is as simple as setting
the property mapreduce. task.profile to true:

% hadoop jar hadoop-examples.jar v4.MaxTemperatureDriver \
-conf conf/hadoop-cluster.xml \
-D mapreduce.task.profile=true \
input/ncdc/all max-temp

This runs the job as normal, but adds an -agentlib parameter to the Java command
used to launch the task containers on the node managers. You can control the precise
parameter that is added by setting the mapreduce. task.profile.params property. The
default uses HPROE a profiling tool that comes with the JDK that, although basic, can
give valuable information about a program’s CPU and heap usage.

It doesn’t usually make sense to profile all tasks in the job, so by default only those with
IDs 0, 1, and 2 are profiled (for both maps and reduces). You can change this by setting
mapreduce. task.profile.maps andmapreduce.task.profile.reduces to specify the
range of task IDs to profile.

The profile output for each task is saved with the task logs in the userlogs subdirectory
of the node manager’s local log directory (alongside the syslog, stdout, and stderr files),
and can be retrieved in the way described in “Hadoop Logs” on page 172, according to
whether log aggregation is enabled or not.
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MapReduce Workflows

So far in this chapter, you have seen the mechanics of writing a program using Map-
Reduce. We haven't yet considered how to turn a data processing problem into the
MapReduce model.

The data processing you have seen so far in this book is to solve a fairly simple problem:
finding the maximum recorded temperature for given years. When the processing gets
more complex, this complexity is generally manifested by having more MapReduce jobs,
rather than having more complex map and reduce functions. In other words, as a rule
of thumb, think about adding more jobs, rather than adding complexity to jobs.

For more complex problems, it is worth considering a higher-level language than Map-
Reduce, such as Pig, Hive, Cascading, Crunch, or Spark. One immediate benefit is that
it frees you from having to do the translation into MapReduce jobs, allowing you to
concentrate on the analysis you are performing.

Finally, the book Data-Intensive Text Processing with MapReduce by Jimmy Lin and
Chris Dyer (Morgan & Claypool Publishers, 2010) is a great resource for learning more
about MapReduce algorithm design and is highly recommended.

Decomposing a Problem into MapReduce Jobs

Let’s look at an example of a more complex problem that we want to translate into a
MapReduce workflow.

Imagine that we want to find the mean maximum recorded temperature for every day
ofthe year and every weather station. In concrete terms, to calculate the mean maximum
daily temperature recorded by station 029070-99999, say, on January 1, we take the mean
of the maximum daily temperatures for this station for January 1, 1901; January 1, 1902;
and so on, up to January 1, 2000.

How can we compute this using MapReduce? The computation decomposes most nat-
urally into two stages:

1. Compute the maximum daily temperature for every station-date pair.

The MapReduce program in this case is a variant of the maximum temperature
program, except that the keys in this case are a composite station-date pair, rather
than just the year.

2. Compute the mean of the maximum daily temperatures for every station-day-month
key.

The mapper takes the output from the previous job (station-date, maximum tem-
perature) records and projects it into (station-day-month, maximum temperature)
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records by dropping the year component. The reduce function then takes the mean
of the maximum temperatures for each station-day-month key.

The output from the first stage looks like this for the station we are interested in (the
mean_max_daily_temp.sh script in the examples provides an implementation in
Hadoop Streaming):

029070-99999 19010101 0
029070-99999 19020101 -94

The first two fields form the key, and the final column is the maximum temperature
from all the readings for the given station and date. The second stage averages these
daily maxima over years to yield:

029070-99999 0101 -68

which is interpreted as saying the mean maximum daily temperature on January 1 for
station 029070-99999 over the century is —6.8°C.

It’s possible to do this computation in one MapReduce stage, but it takes more work on
the part of the programmer.

The arguments for having more (but simpler) MapReduce stages are that doing so leads
to more composable and more maintainable mappers and reducers. Some of the case
studies referred to in Part V cover real-world problems that were solved using MapRe-
duce, and in each case, the data processing task is implemented using two or more
MapReduce jobs. The details in that chapter are invaluable for getting a better idea of
how to decompose a processing problem into a MapReduce workflow.

It’s possible to make map and reduce functions even more composable than we have
done. A mapper commonly performs input format parsing, projection (selecting the
relevant fields), and filtering (removing records that are not of interest). In the mappers
you have seen so far, we have implemented all of these functions in a single mapper.
However, there is a case for splitting these into distinct mappers and chaining them into
asingle mapper using the ChainMapper library class that comes with Hadoop. Combined
withaChainReducer, you can runa chain of mappers, followed by a reducer and another
chain of mappers, in a single MapReduce job.

JobControl

When there is more than one job in a MapReduce workflow, the question arises: how
do you manage the jobs so they are executed in order? There are several approaches,
and the main consideration is whether you have a linear chain of jobs or a more complex
directed acyclic graph (DAG) of jobs.

2. Its an interesting exercise to do this. Hint: use “Secondary Sort” on page 262.
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For a linear chain, the simplest approach is to run each job one after another, waiting
until a job completes successfully before running the next:

JobClient.runJob(conf1);
JobClient.runJob(conf2);

If a job fails, the runJob() method will throw an IOException, so later jobs in the
pipeline don’t get executed. Depending on your application, you might want to catch
the exception and clean up any intermediate data that was produced by any previous
jobs.

The approach is similar with the new MapReduce API, except you need to examine the
Boolean return value of the waitForCompletion() method on Job: true means the job
succeeded, and false means it failed.

For anything more complex than a linear chain, there are libraries that can help or-
chestrate your workflow (although they are also suited to linear chains, or even one-off
jobs). The simplest is in the org.apache.hadoop.mapreduce. jobcontrol package: the
JobControl class. (There is an equivalent class in the org.apache.hadoop.mapred. job
control package, too.) An instance of JobControl represents a graph of jobs to be run.
You add the job configurations, then tell the JobControl instance the dependencies
between jobs. You run the JobControl in a thread, and it runs the jobs in dependency
order. You can poll for progress, and when the jobs have finished, you can query for all
the jobs’ statuses and the associated errors for any failures. If a job fails, JobControl
won't run its dependencies.

Apache Oozie

Apache Oozie is a system for running workflows of dependent jobs. It is composed of
two main parts: a workflow engine that stores and runs workflows composed of different
types of Hadoop jobs (MapReduce, Pig, Hive, and so on), and a coordinator engine that
runs workflow jobs based on predefined schedules and data availability. Oozie has been
designed to scale, and it can manage the timely execution of thousands of workflows in
a Hadoop cluster, each composed of possibly dozens of constituent jobs.

Oozie makes rerunning failed workflows more tractable, since no time is wasted running
successful parts of a workflow. Anyone who has managed a complex batch system knows
how difficult it can be to catch up from jobs missed due to downtime or failure, and will
appreciate this feature. (Furthermore, coordinator applications representing a single
data pipeline may be packaged into a bundle and run together as a unit.)

Unlike JobControtl, which runs on the client machine submitting the jobs, Oozie runs
as a service in the cluster, and clients submit workflow definitions for immediate or later
execution. In Oozie parlance, a workflow is a DAG of action nodes and control-flow
nodes.
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An action node performs a workflow task, such as moving files in HDFS; running a
MapReduce, Streaming, Pig, or Hive job; performing a Sqoop import; or running an
arbitrary shell script or Java program. A control-flow node governs the workflow exe-
cution between actions by allowing such constructs as conditional logic (so different
execution branches may be followed depending on the result of an earlier action node)
or parallel execution. When the workflow completes, Oozie can make an HT TP callback
to the client to inform it of the workflow status. It is also possible to receive callbacks
every time the workflow enters or exits an action node.

Defining an Oozie workflow

Workflow definitions are written in XML using the Hadoop Process Definition Lan-
guage, the specification for which can be found on the Oozie website. Example 6-14
shows a simple Oozie workflow definition for running a single MapReduce job.

Example 6-14. Oozie workflow definition to run the maximum temperature MapRe-
duce job

<workflow-app xmlns="uri:oozie:workflow:0.1" name="max-temp-workflow">
<start to="max-temp-mr"/>
<action name="max-temp-mr'"s
<map-reduce>
<job-tracker>${resourceManager}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>
<delete path="${nameNode}/user/${wf:user()}/output"/>
</prepare>
<configuration>
<property>
<name>mapred.mapper.new-api</name>
<value>true</value>
</property>
<property>
<name>mapred.reducer.new-api</name>
<value>true</value>
</property>
<property>
<name>mapreduce. job.map.class</name>
<value>MaxTemperatureMapper</value>
</property>
<property>
<name>mapreduce. job.combine.class</name>
<value>MaxTemperatureReducer</value>
</property>
<property>
<name>mapreduce. job.reduce.class</name>
<value>MaxTemperatureReducer</value>
</property>
<property>
<name>mapreduce. job.output.key.class</name>

180 | Chapter 6: Developing a MapReduce Application


http://oozie.apache.org/

<value>org.apache.hadoop.io.Text</value>
</property>
<property>
<name>mapreduce. job.output.value.class</name>
<value>org.apache.hadoop.10.IntWritable</value>
</property>
<property>
<name>mapreduce.input.fileinputformat.inputdir</name>
<value>/user/${wf:user()}/input/ncdc/micro</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.outputdir</name>
<value>/user/${wf:user()}/output</value>
</property>
</configuration>
</map-reduce>
<ok to="end"/>
<error to="fail"/>
</action>
<kill name="fail">
<message>MapReduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]
</message>
</kill>
<end name="end"/>
</workflow-app>

This workflow has three control-flow nodes and one action node: a start control node,
a map-reduce action node, a kill control node, and an end control node. The nodes
and allowed transitions between them are shown in Figure 6-4.

ok

error

Figure 6-4. Transition diagram of an Oozie workflow

All workflows must have one start and one end node. When the workflow job starts,
it transitions to the node specified by the start node (the max-temp-mr action in this
example). A workflow job succeeds when it transitions to the end node. However, if the
workflow job transitions to a kill node, it is considered to have failed and reports the
appropriate error message specified by the message element in the workflow definition.
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The bulk of this workflow definition file specifies the map-reduce action. The first two
elements, job-tracker and name-node, are used to specify the YARN resource manager
(or jobtracker in Hadoop 1) to submit the job to and the namenode (actually a Hadoop
filesystem URI) for input and output data. Both are parameterized so that the workflow
definition is not tied to a particular cluster (which makes it easy to test). The parameters
are specified as workflow job properties at submission time, as we shall see later.

Despite its name, the job-tracker element is used to specify a YARN
resource manager address and port.

N

The optional prepare element runs before the MapReduce job and is used for directory
deletion (and creation, too, if needed, although that is not shown here). By ensuring
that the output directory is in a consistent state before running a job, Oozie can safely
rerun the action if the job fails.

The MapReduce job to run is specified in the configuration element using nested
elements for specifying the Hadoop configuration name-value pairs. You can view the
MapReduce configuration section as a declarative replacement for the driver classes that
we have used elsewhere in this book for running MapReduce programs (such as
Example 2-5).

We have taken advantage of JSP Expression Language (EL) syntax in several places in
the workflow definition. Oozie provides a set of functions for interacting with the
workflow. For example, ${wf:user()} returns the name of the user who started the
current workflow job, and we use it to specify the correct filesystem path. The Oozie
specification lists all the EL functions that Oozie supports.

Packaging and deploying an Oozie workflow application

A workflow application is made up of the workflow definition plus all the associated
resources (such as MapReduce JAR files, Pig scripts, and so on) needed to run it. Ap-
plications must adhere to a simple directory structure, and are deployed to HDES so
that they can be accessed by Oozie. For this workflow application, we’ll put all of the
files in a base directory called max-temp-workflow, as shown diagrammatically here:

max-temp-workflow/

— lib/

|  — hadoop-examples.jar

L— workflow.xml
The workflow definition file workflow.xml must appear in the top level of this directory.
JAR files containing the application’s MapReduce classes are placed in the lib directory.
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Workflow applications that conform to this layout can be built with any suitable build
tool, such as Ant or Maven; you can find an example in the code that accompanies this
book. Once an application has been built, it should be copied to HDFS using regular
Hadoop tools. Here is the appropriate command for this application:

% hadoop fs -put hadoop-examples/target/max-temp-workflow max-temp-workflow

Running an Oozie workflow job

Next, let’s see how to run a workflow job for the application we just uploaded. For this
we use the oozie command-line tool, a client program for communicating with an Oozie
server. For convenience, we export the 00ZIE_URL environment variable to tell the oozie
command which Oozie server to use (here we’re using one running locally):

% export 00ZIE_URL="http://localhost:11000/00zie"

There are lots of subcommands for the oozie tool (type oozie help to get a list), but
we're going to call the job subcommand with the - run option to run the workflow job:
% oozie job -config ch@6-mr-dev/src/main/resources/max-temp-workflow.properties \

-run
job: 0000001-140911033236814-00z1e-o00zi-W

The -config option specifies a local Java properties file containing definitions for the
parameters in the workflow XML file (in this case, nameNode and resourceManager), as
well as oozie.wf.application.path, which tells Oozie the location of the workflow
application in HDFS. Here are the contents of the properties file:

nameNode=hdfs://localhost:8020
resourceManager="Llocalhost:8032
oozie.wf.application.path=${nameNode}/user/${user.name}/max-temp-workflow

To get information about the status of the workflow job, we use the - info option, spec-
ifying the job ID that was printed by the run command earlier (type oozie job to get
a list of all jobs):

% oozie job -info 0000001-140911033236814-00zie-00zi-W

The output shows the status: RUNNING, KILLED, or SUCCEEDED. You can also find all this
information via Oozie’s web UI (http://localhost:11000/00zie).
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When the job has succeeded, we can inspect the results in the usual way:

% hadoop fs -cat output/part-*
1949 111
1950 22

This example only scratched the surface of writing Oozie workflows. The documenta-
tion on Oozie’s website has information about creating more complex workflows, as
well as writing and running coordinator jobs.
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CHAPTER 7
How MapReduce Works

In this chapter, we look at how MapReduce in Hadoop works in detail. This knowledge
provides a good foundation for writing more advanced MapReduce programs, which
we will cover in the following two chapters.

Anatomy of a MapReduce Job Run

You can run a MapReduce job with a single method call: submit() on a Job object (you
can also call wattForCompletion(), which submits the job if it hasn’t been submitted
already, then waits for it to finish).! This method call conceals a great deal of processing
behind the scenes. This section uncovers the steps Hadoop takes to run a job.

The whole process is illustrated in Figure 7-1. At the highest level, there are five inde-
pendent entities:*

o The client, which submits the MapReduce job.

o The YARN resource manager, which coordinates the allocation of compute re-
sources on the cluster.

o The YARN node managers, which launch and monitor the compute containers on
machines in the cluster.

o The MapReduce application master, which coordinates the tasks running the Map-
Reduce job. The application master and the MapReduce tasks run in containers that
are scheduled by the resource manager and managed by the node managers.

1. In the old MapReduce API, you can call JobClient.submitJob(conf) or JobClient.runJob(conf).

2. Not discussed in this section are the job history server daemon (for retaining job history data) and the shuffle
handler auxiliary service (for serving map outputs to reduce tasks).
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o The distributed filesystem (normally HDFS, covered in Chapter 3), which is used
for sharing job files between the other entities.

2: get new application
MapReduce |1: run job ‘
program [T > 4: submit application | ResourceManager

clientJVM
client node S
.~ resource manager node
5a: start container',.:'
8 allocate resources
NodeManager g
3: copy job

resources

5b: launch

6: initialize

job “A MRAppMaster Start NodeManager

. node manager node

9b: launch
v o Teretrieve v
K inputsplis task JVM
.Shared 10: retrieve job resources .
Filesystem < YarnChild
(e.g., HDFS)

1:run
v
MapTask
or
ReduceTask

node manager node

Figure 7-1. How Hadoop runs a MapReduce job

Job Submission

The submit() method on Job creates an internal JobSubmitter instance and calls
submitJobInternal() on it (step 1 in Figure 7-1). Having submitted the job, waitFor
Completion() polls the job’s progress once per second and reports the progress to the
console if it has changed since the last report. When the job completes successfully, the
job counters are displayed. Otherwise, the error that caused the job to fail is logged to
the console.

The job submission process implemented by JobSubmitter does the following:

186 | Chapter 7: How MapReduce Works



o Asks the resource manager for a new application ID, used for the MapReduce job
ID (step 2).

o Checks the output specification of the job. For example, if the output directory has
notbeen specified or it already exists, the job is not submitted and an error is thrown
to the MapReduce program.

o Computes the input splits for the job. If the splits cannot be computed (because the
input paths don't exist, for example), the job is not submitted and an error is thrown
to the MapReduce program.

« Copies the resources needed to run the job, including the job JAR file, the config-
uration file, and the computed input splits, to the shared filesystem in a directory
named after the job ID (step 3). The job JAR is copied with a high replication factor
(controlled by the mapreduce.client.submit.file.replication property, which
defaults to 10) so that there arelots of copies across the cluster for the node managers
to access when they run tasks for the job.

o Submits the job by calling submitApplication() on the resource manager
(step 4).

Job Initialization

When the resource manager receives a call to its submitApplication() method, it
hands off the request to the YARN scheduler. The scheduler allocates a container, and
the resource manager then launches the application master’s process there, under the
node manager’s management (steps 5a and 5b).

The application master for MapReduce jobs is a Java application whose main class is
MRAppMaster. It initializes the job by creating a number of bookkeeping objects to keep
track of the job’s progress, as it will receive progress and completion reports from the
tasks (step 6). Next, it retrieves the input splits computed in the client from the shared
filesystem (step 7). It then creates a map task object for each split, as well as a number
of reduce task objects determined by the mapreduce. job.reduces property (set by the
setNumReduceTasks() method on Job). Tasks are given IDs at this point.

The application master must decide how to run the tasks that make up the MapReduce
job. If the job is small, the application master may choose to run the tasks in the same
JVM as itself. This happens when it judges that the overhead of allocating and running
tasks in new containers outweighs the gain to be had in running them in parallel, com-
pared to running them sequentially on one node. Such a job is said to be uberized, or
run as an uber task.

What qualifies as a small job? By default, a small job is one that has less than 10 mappers,
only one reducer, and an input size that is less than the size of one HDFS block. (Note
that  these values may be changed for a job by setting
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mapreduce. job.ubertask.maxmaps, mapreduce. job.ubertask.maxreduces, and map
reduce. job.ubertask.maxbytes.) Uber tasks must be enabled explicitly (for an indi-
vidual job, or across the cluster) by setting mapreduce. job.ubertask.enable to true.

Finally, before any tasks can be run, the application master calls the setupJob() method
on the OutputCommitter. For FileOutputCommitter, which is the default, it will create
the final output directory for the job and the temporary working space for the task
output. The commit protocol is described in more detail in “Output Committers” on
page 206.

Task Assignment

If the job does not qualify for running as an uber task, then the application master
requests containers for all the map and reduce tasks in the job from the resource manager
(step 8). Requests for map tasks are made first and with a higher priority than those for
reduce tasks, since all the map tasks must complete before the sort phase of the reduce
can start (see “Shuffle and Sort” on page 197). Requests for reduce tasks are not made
until 5% of map tasks have completed (see “Reduce slow start” on page 308).

Reduce tasks can run anywhere in the cluster, but requests for map tasks have data
locality constraints that the scheduler tries to honor (see “Resource Requests” on page
81). In the optimal case, the task is data local—that is, running on the same node that
the split resides on. Alternatively, the task may be rack local: on the same rack, but not
the same node, as the split. Some tasks are neither data local nor rack local and retrieve
their data from a different rack than the one they are running on. For a particular job
run, you can determine the number of tasks that ran at each locality level by looking at
the job’s counters (see Table 9-6).

Requests also specify memory requirements and CPUs for tasks. By default, each map

and reduce task is allocated 1,024 MB of memory and one virtual core. The values are

configurable on a per-job basis (subject to minimum and maximum values described

in “Memory settings in YARN and MapReduce” on page 301) via the following properties:
mapreduce.map.memory.mb, mapreduce.reduce.memory.mb, mapreduce.map.cpu

.vcores and mapreduce.reduce.cpu.vcores.
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Task Execution

Once a task has been assigned resources for a container on a particular node by the
resource manager’s scheduler, the application master starts the container by contacting
the node manager (steps 9a and 9b). The task is executed by a Java application whose
main class is YarnChild. Before it can run the task, it localizes the resources that the
task needs, including the job configuration and JAR file, and any files from the dis-
tributed cache (step 10; see “Distributed Cache” on page 274). Finally, it runs the map or
reduce task (step 11).

The YarnChild runs in a dedicated JVM, so that any bugs in the user-defined map and
reduce functions (or even in YarnChild) don't affect the node manager—by causing it
to crash or hang, for example.

Each task can perform setup and commit actions, which are run in the same JVM as
the task itself and are determined by the OutputCommitter for the job (see “Output
Committers” on page 206). For file-based jobs, the commit action moves the task output
from a temporary location to its final location. The commit protocol ensures that when
speculative execution is enabled (see “Speculative Execution” on page 204), only one of
the duplicate tasks is committed and the other is aborted.

Streaming

Streaming runs special map and reduce tasks for the purpose of launching the user-
supplied executable and communicating with it (Figure 7-2).

The Streaming task communicates with the process (which may be written in any lan-
guage) using standard input and output streams. During execution of the task, the Java
process passes input key-value pairs to the external process, which runs it through the
user-defined map or reduce function and passes the output key-value pairs back to the
Java process. From the node manager’s point of view, it is as if the child process ran the
map or reduce code itself.
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Figure 7-2. The relationship of the Streaming executable to the node manager and the
task container

Progress and Status Updates

MapReduce jobs are long-running batch jobs, taking anything from tens of seconds to
hours to run. Because this can be a significant length of time, it's important for the user
to get feedback on how the job is progressing. A job and each of its tasks have a status,
which includes such things as the state of the job or task (e.g., running, successfully
completed, failed), the progress of maps and reduces, the values of the job’s counters,
and a status message or description (which may be set by user code). These statuses
change over the course of the job, so how do they get communicated back to the client?

When a task is running, it keeps track of its progress (i.e., the proportion of the task
completed). For map tasks, this is the proportion of the input that has been processed.
For reduce tasks, it’s a little more complex, but the system can still estimate the pro-
portion of the reduce input processed. It does this by dividing the total progress into
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three parts, corresponding to the three phases of the shuffle (see “Shuffle and Sort” on
page 197). For example, if the task has run the reducer on halfits input, the task’s progress
is 5/6, since it has completed the copy and sort phases (1/3 each) and is halfway through
the reduce phase (1/6).

What Constitutes Progress in MapReduce?

Progress is not always measurable, but nevertheless, it tells Hadoop that a task is doing
something. For example, a task writing output records is making progress, even when
it cannot be expressed as a percentage of the total number that will be written (because
the latter figure may not be known, even by the task producing the output).

Progress reporting is important, as Hadoop will not fail a task that’s making progress.
All of the following operations constitute progress:

 Reading an input record (in a mapper or reducer)
o Writing an output record (in a mapper or reducer)

o Setting the status description (via Reporter’s or TaskAttemptContext’s setSta
tus() method)

o Incrementing a counter (using Reporter’s incrCounter() method or Counter’s
increment() method)

o Calling Reporter’s or TaskAttemptContext’s progress() method

Tasks also have a set of counters that count various events as the task runs (we saw an
example in “A test run” on page 27), which are either built into the framework, such as
the number of map output records written, or defined by users.

As the map or reduce task runs, the child process communicates with its parent appli-
cation master through the umbilical interface. The task reports its progress and status
(including counters) back to its application master, which has an aggregate view of the
job, every three seconds over the umbilical interface.

The resource manager web UI displays all the running applications with links to the
web Uls of their respective application masters, each of which displays further details
on the MapReduce job, including its progress.

During the course of the job, the client receives the latest status by polling the application
master every second (the interval is set via mapreduce.client.progressmonitor.pol
linterval). Clients can also use Job’s getStatus() method to obtain a JobStatus
instance, which contains all of the status information for the job.

The process is illustrated in Figure 7-3.
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Figure 7-3. How status updates are propagated through the MapReduce system

Job Completion

When the application master receives a notification that the last task for a job is com-
plete, it changes the status for the job to “successful.” Then, when the Job polls for status,
it learns that the job has completed successfully, so it prints a message to tell the user
and then returns from the waitForCompletion() method. Job statistics and counters
are printed to the console at this point.

The application master also sends an HTTP job notification if it is configured to do so.
This can be configured by clients wishing to receive callbacks, via the
mapreduce.job.end-notification.url property.

Finally, on job completion, the application master and the task containers clean up their
working state (so intermediate output is deleted), and the OutputCommitter’s commit
Job() method is called. Job information is archived by the job history server to enable
later interrogation by users if desired.
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Failures

In the real world, user code is buggy, processes crash, and machines fail. One of the
major benefits of using Hadoop is its ability to handle such failures and allow your job
to complete successfully. We need to consider the failure of any of the following entities:
the task, the application master, the node manager, and the resource manager.

Task Failure

Consider first the case of the task failing. The most common occurrence of this failure
is when user code in the map or reduce task throws a runtime exception. If this happens,
the task JVM reports the error back to its parent application master before it exits. The
error ultimately makes it into the user logs. The application master marks the task
attempt as failed, and frees up the container so its resources are available for another
task.

For Streaming tasks, if the Streaming process exits with a nonzero exit code, it is marked
as failed. This behavior is governed by the stream.non.zero.exit.is.fatlure prop-
erty (the default is true).

Another failure mode is the sudden exit of the task JVM—perhaps there is a JVM bug
that causes the JVM to exit for a particular set of circumstances exposed by the
MapReduce user code. In this case, the node manager notices that the process has exited
and informs the application master so it can mark the attempt as failed.

Hanging tasks are dealt with differently. The application master notices that it hasn’t
received a progress update for a while and proceeds to mark the task as failed. The task
JVM process will be killed automatically after this period.” The timeout period after
which tasks are considered failed is normally 10 minutes and can be configured on a
per-job basis (or a cluster basis) by setting the mapreduce. task. timeout property to a
value in milliseconds.

Setting the timeout to a value of zero disables the timeout, so long-running tasks are
never marked as failed. In this case, a hanging task will never free up its container, and
over time there may be cluster slowdown as a result. This approach should therefore be
avoided, and making sure that a task is reporting progress periodically should suffice
(see “What Constitutes Progress in MapReduce?” on page 191).

3. Ifa Streaming process hangs, the node manager will kill it (along with the JVM that launched it) only in the
following circumstances: either yarn.nodemanager .container-executor.classissettoorg.apache.ha
doop.yarn.server.nodemanager.LinuxContainerExecutor, or the default container executor is being
used and the setsid command is available on the system (so that the task JVM and any processes it launches
are in the same process group). In any other case, orphaned Streaming processes will accumulate on the
system, which will impact utilization over time.
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When the application master is notified of a task attempt that has failed, it will reschedule
execution of the task. The application master will try to avoid rescheduling the task on
a node manager where it has previously failed. Furthermore, if a task fails four times, it
will not be retried again. This value is configurable. The maximum number of attempts
to run a task is controlled by the mapreduce.map.maxattempts property for map tasks
and mapreduce.reduce.maxattempts for reduce tasks. By default, if any task fails four
times (or whatever the maximum number of attempts is configured to), the whole job
fails.

For some applications, it is undesirable to abort the job if a few tasks fail, as it may be
possible to use the results of the job despite some failures. In this case, the maximum
percentage of tasks that are allowed to fail without triggering job failure can be set for the
job. Map tasks and reduce tasks are controlled independently, using
the mapreduce.map.failures.maxpercent and mapreduce.reduce.failures.maxper
cent properties.

A task attempt may also be killed, which is different from it failing. A task attempt may
be killed because it is a speculative duplicate (for more information on this topic, see
“Speculative Execution” on page 204), or because the node manager it was running on
failed and the application master marked all the task attempts running on it as killed.
Killed task attempts do not count against the number of attempts to run the task (as set
by mapreduce.map.maxattempts and mapreduce.reduce.maxattempts), because it
wasn't the task’s fault that an attempt was killed.

Users may also kill or fail task attempts using the web UT or the command line (type
mapred job to see the options). Jobs may be killed by the same mechanisms.

Application Master Failure

Just like MapReduce tasks are given several attempts to succeed (in the face of hardware
or network failures), applications in YARN are retried in the event of failure. The max-
imum number of attempts to run a MapReduce application master is controlled by the
mapreduce.am.max-attempts property. The default value is 2, so if a MapReduce ap-
plication master fails twice it will not be tried again and the job will fail.

YARN imposes a limit for the maximum number of attempts for any YARN application
master running on the cluster, and individual applications may not exceed this limit.
The limit is set by yarn.resourcemanager.am.max-attempts and defaults to 2, so if
you want to increase the number of MapReduce application master attempts, you will
have to increase the YARN setting on the cluster, too.

The way recovery works is as follows. An application master sends periodic heartbeats
to the resource manager, and in the event of application master failure, the resource
manager will detect the failure and start a new instance of the master running in a new
container (managed by a node manager). In the case of the MapReduce application
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master, it will use the job history to recover the state of the tasks that were already run
by the (failed) application so they don’t have to be rerun. Recovery is enabled by default,
but can be disabled by setting yarn.app.mapreduce.am.job.recovery.enable to
false.

The MapReduce client polls the application master for progress reports, but if its ap-
plication master fails, the client needs to locate the new instance. During job initializa-
tion, the client asks the resource manager for the application master’s address, and then
caches it so it doesn’t overload the resource manager with a request every time it needs
to poll the application master. If the application master fails, however, the client will
experience a timeout when it issues a status update, at which point the client will go
back to the resource manager to ask for the new application master’s address. This
process is transparent to the user.

Node Manager Failure

Ifanode manager fails by crashing or running very slowly, it will stop sending heartbeats
to the resource manager (or send them very infrequently). The resource manager will
notice a node manager that has stopped sending heartbeats if it hasn't received one for
10 minutes  (this is  configured, in  milliseconds, via  the
yarn.resourcemanager.nm.liveness-monitor.expiry-interval-ms property) and
remove it from its pool of nodes to schedule containers on.

Any task or application master running on the failed node manager will be recovered
using the mechanisms described in the previous two sections. In addition, the applica-
tion master arranges for map tasks that were run and completed successfully on the
failed node manager to be rerun if they belong to incomplete jobs, since their inter-
mediate output residing on the failed node manager’s local filesystem may not be ac-
cessible to the reduce task.

Node managers may be blacklisted if the number of failures for the application is high,
even if the node manager itself has not failed. Blacklisting is done by the application
master, and for MapReduce the application master will try to reschedule tasks on dif-
ferent nodes if more than three tasks fail on a node manager. The user may set the
threshold with the mapreduce. job.maxtaskfailures.per.tracker job property.

Note that the resource manager does not do blacklisting across ap-
plications (at the time of writing), so tasks from new jobs may be
scheduled on bad nodes even if they have been blacklisted by an
application master running an earlier job.
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Resource Manager Failure

Failure of the resource manager is serious, because without it, neither jobs nor task
containers can be launched. In the default configuration, the resource manager is a
single point of failure, since in the (unlikely) event of machine failure, all running jobs
fail—and can't be recovered.

To achieve high availability (HA), it is necessary to run a pair of resource managers in
an active-standby configuration. If the active resource manager fails, then the standby
can take over without a significant interruption to the client.

Information about all the running applications is stored in a highly available state store
(backed by ZooKeeper or HDES), so that the standby can recover the core state of the
failed active resource manager. Node manager information is not stored in the state
store since it can be reconstructed relatively quickly by the new resource manager as
the node managers send their first heartbeats. (Note also that tasks are not part of the
resource manager’s state, since they are managed by the application master. Thus, the
amount of state to be stored is therefore much more manageable than that of the job-
tracker in MapReduce 1.)

When the new resource manager starts, it reads the application information from the
state store, then restarts the application masters for all the applications running on the
cluster. This does not count as a failed application attempt (so it does not count against
yarn.resourcemanager.am.max-attempts), since the application did not fail due to an
error in the application code, but was forcibly killed by the system. In practice, the
application master restart is not an issue for MapReduce applications since they recover
the work done by completed tasks (as we saw in “Application Master Failure” on page
194).

The transition of a resource manager from standby to active is handled by a failover
controller. The default failover controller is an automatic one, which uses ZooKeeper
leader election to ensure that there is only a single active resource manager at one time.
Unlike in HDFS HA (see “HDFS High Availability” on page 48), the failover controller
does not have to be a standalone process, and is embedded in the resource manager by
default for ease of configuration. It is also possible to configure manual failover, but this
is not recommended.

Clients and node managers must be configured to handle resource manager failover,
since there are now two possible resource managers to communicate with. They try
connecting to each resource manager in a round-robin fashion until they find the active
one. If the active fails, then they will retry until the standby becomes active.

196 | Chapter7: How MapReduce Works



Shuffle and Sort

MapReduce makes the guarantee that the input to every reducer is sorted by key. The
process by which the system performs the sort—and transfers the map outputs to the
reducers as inputs—is known as the shuffle.* In this section, we look at how the shuftle
works, as a basic understanding will be helpful should you need to optimize a MapRe-
duce program. The shuffle is an area of the codebase where refinements and
improvements are continually being made, so the following description necessarily
conceals many details. In many ways, the shuffle is the heart of MapReduce and is where
the “magic” happens.

The Map Side

When the map function starts producing output, it is not simply written to disk. The
process is more involved, and takes advantage of buffering writes in memory and doing
some presorting for efficiency reasons. Figure 7-4 shows what happens.

Copy “Sort” Reduce
phase phase phase
map task partitiony reduce task
spill fo disk fetch oo >,
bufferin :* >0} r -
memory ¢

merge (U< -

=,

merge V- output

lnput - :
split / i A
partitions y J /
% mixture of in-memory and on-disk data

Othermaps e, 5 Otherreduces

Figure 7-4. Shuffle and sort in MapReduce

Each map task has a circular memory buffer that it writes the output to. The buffer is
100 MB by default (the size can be tuned by changing the mapreduce. task.io.sort.mb
property). When the contents of the buffer reach a certain threshold size (mapre
duce.map.sort.spill.percent, which has the default value 0.80, or 80%), a back-
ground thread will start to spill the contents to disk. Map outputs will continue to be
written to the buffer while the spill takes place, but if the buffer fills up during this time,

4. The term shuffle is actually imprecise, since in some contexts it refers to only the part of the process where
map outputs are fetched by reduce tasks. In this section, we take it to mean the whole process, from the point
where a map produces output to where a reduce consumes input.

ShuffleandSort | 197



the map will block until the spill is complete. Spills are written in round-robin fashion
to the directories specified by the mapreduce.cluster.local.dir property, in a job-
specific subdirectory.

Before it writes to disk, the thread first divides the data into partitions corresponding
to the reducers that they will ultimately be sent to. Within each partition, the background
thread performs an in-memory sort by key, and if there is a combiner function, it is run
on the output of the sort. Running the combiner function makes for a more compact
map output, so there is less data to write to local disk and to transfer to the reducer.

Each time the memory buffer reaches the spill threshold, a new spill file is created, so
after the map task has written its last output record, there could be several spill files.
Before the task is finished, the spill files are merged into a single partitioned and sorted
output file. The configuration property mapreduce. task.io.sort. factor controls the
maximum number of streams to merge at once; the default is 10.

If there are at least three spill files (set by the mapreduce.map.combine.minspills
property), the combiner is run again before the output file is written. Recall that
combiners may be run repeatedly over the input without affecting the final result. If
there are only one or two spills, the potential reduction in map output size is not worth
the overhead in invoking the combiner, so it is not run again for this map output.

It is often a good idea to compress the map output as it is written to disk, because doing
so makes it faster to write to disk, saves disk space, and reduces the amount of data to
transfer to the reducer. By default, the output is not compressed, but it is easy to enable
this by setting mapreduce.map.output.compress to true. The compression library to
use is specified by mapreduce.map.output.compress.codec; see “Compression” on
page 100 for more on compression formats.

The output file’s partitions are made available to the reducers over HTTP. The maximum
number of worker threads used to serve the file partitions is controlled by the mapre
duce.shuffle.max. threads property; this setting is per node manager, not per map
task. The default of 0 sets the maximum number of threads to twice the number of
processors on the machine.

The Reduce Side

Let’s turn now to the reduce part of the process. The map output file is sitting on the
local disk of the machine that ran the map task (note that although map outputs always
get written to local disk, reduce outputs may notbe), but now itis needed by the machine
that is about to run the reduce task for the partition. Moreover, the reduce task needs
the map output for its particular partition from several map tasks across the cluster. The
map tasks may finish at different times, so the reduce task starts copying their outputs
as soon as each completes. This is known as the copy phase of the reduce task. The reduce
task has a small number of copier threads so that it can fetch map outputs in parallel.
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The default is five threads, but this number can be changed by setting the mapreduce. re
duce.shuffle.parallelcopies property.

How do reducers know which machines to fetch map output from?

As map tasks complete successfully, they notify their application
master using the heartbeat mechanism. Therefore, for a given job, the
application master knows the mapping between map outputs and
hosts. A thread in the reducer periodically asks the master for map
output hosts until it has retrieved them all.

Hosts do not delete map outputs from disk as soon as the first re-
ducer has retrieved them, as the reducer may subsequently fail. In-
stead, they wait until they are told to delete them by the application
master, which is after the job has completed.

Map outputs are copied to the reduce task JVM’s memory if they are small enough (the
buffer’s size is controlled by mapreduce.reduce.shuffle.input.buffer.percent,
which specifies the proportion of the heap to use for this purpose); otherwise, they are
copied to disk. When the in-memory buffer reaches a threshold size (controlled by
mapreduce.reduce.shuffle.merge.percent) or reaches a threshold number of map
outputs (mapreduce.reduce.merge.inmem. threshold),itis merged and spilled to disk.
If a combiner is specified, it will be run during the merge to reduce the amount of data
written to disk.

As the copies accumulate on disk, a background thread merges them into larger, sorted
files. This saves some time merging later on. Note that any map outputs that were com-
pressed (by the map task) have to be decompressed in memory in order to perform a
merge on them.

When all the map outputs have been copied, the reduce task moves into the sort
phase (which should properly be called the merge phase, as the sorting was carried out
on the map side), which merges the map outputs, maintaining their sort ordering. This
is done in rounds. For example, if there were 50 map outputs and the merge factor was
10 (the default, controlled by the mapreduce.task.io.sort.factor property, just like
in the map’s merge), there would be five rounds. Each round would merge 10 files into
1, so at the end there would be 5 intermediate files.

Rather than have a final round that merges these five files into a single sorted file, the
merge saves a trip to disk by directly feeding the reduce function in what is the last
phase: the reduce phase. This final merge can come from a mixture of in-memory and
on-disk segments.
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The number of files merged in each round is actually more subtle than
this example suggests. The goal is to merge the minimum number of
files to get to the merge factor for the final round. So if there were 40
files, the merge would not merge 10 files in each of the four rounds
to get 4 files. Instead, the first round would merge only 4 files, and
the subsequent three rounds would merge the full 10 files. The 4
merged files and the 6 (as yet unmerged) files make a total of 10 files
for the final round. The process is illustrated in Figure 7-5.

Note that this does not change the number of rounds; it’s just an
optimization to minimize the amount of data that is written to disk,
since the final round always merges directly into the reduce.

A 4

round 1

round 2

round 3
o round 5 reduce

round 4

\ 4

Figure 7-5. Efficiently merging 40 file segments with a merge factor of 10

During the reduce phase, the reduce function is invoked for each key in the sorted
output. The output of this phase is written directly to the output filesystem, typically
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HDFEFS. In the case of HDFS, because the node manager is also running a datanode, the
first block replica will be written to the local disk.

Configuration Tuning

We are now in a better position to understand how to tune the shuffle to improve
MapReduce performance. The relevant settings, which can be used on a per-job basis
(except where noted), are summarized in Tables 7-1 and 7-2, along with the defaults,
which are good for general-purpose jobs.

The general principle is to give the shuffle as much memory as possible. However, there
is a trade-off, in that you need to make sure that your map and reduce functions get
enough memory to operate. This is why it is best to write your map and reduce functions
touse aslittle memory as possible—certainly they should not use an unbounded amount
of memory (avoid accumulating values in a map, for example).

The amount of memory given to the JVMs in which the map and reduce tasks run is
set by the mapred.child. java.opts property. You should try to make this as large as
possible for the amount of memory on your task nodes; the discussion in “Memory
settingsin YARN and MapReduce” on page 301 goes through the constraints to consider.

On the map side, the best performance can be obtained by avoiding multiple spills to
disk; one is optimal. If you can estimate the size of your map outputs, you can set the
mapreduce.task.io.sort.* properties appropriately to minimize the number of spills.
In particular, you should increase mapreduce. task.1o.sort.mb if you can. There is a
MapReduce counter (SPILLED_RECORDS; see “Counters” on page 247) that counts the total
number of records that were spilled to disk over the course of a job, which can be useful
for tuning. Note that the counter includes both map- and reduce-side spills.

On the reduce side, the best performance is obtained when the intermediate data can
reside entirely in memory. This does not happen by default, since for the general case
all the memory is reserved for the reduce function. But if your reduce function has light
memory requirements, setting mapreduce.reduce.merge.inmem.threshold to 0 and
mapreduce.reduce.input.buffer.percentto 1.0 (oralower value; see Table 7-2) may
bring a performance boost.

In April 2008, Hadoop won the general-purpose terabyte sort benchmark (as discussed
in “A Brief History of Apache Hadoop” on page 12), and one of the optimizations used
was keeping the intermediate data in memory on the reduce side.

More generally, Hadoop uses a bufter size of 4 KB by default, which is low, so you should
increase this across the cluster (by setting io.file.buffer.size; see also “Other Ha-
doop Properties” on page 307).
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Table 7-1. Map-side tuning properties

Property name Type
mapreduce.task.io.sort.mb int
mapre float
duce.map.sort.spill.percent
mapreduce.task.io.sort.fac  int
tor

mapreduce.map.combine.min int
spills

mapreduce.map.output.com boolean
press

mapreduce.map.output.com Class
press.codec name
mapreduce.shuf int

fle.max.threads

Default value

100

0.80

10

false

org.apache.ha
doop.i0.com

Description

The size, in megabytes, of the memory
buffer to use while sorting map output.

The threshold usage proportion for both
the map output memory buffer and the
record boundaries index to start the
process of spilling to disk.

The maximum number of streams to

merge at once when sorting files. This
property is also used in the reduce. It's
fairly common to increase this to 100.

The minimum number of spill files
needed for the combiner to run (if a
combiner is specified).

Whether to compress map outputs.

The compression codec to use for map
outputs.

press.Default

Codec
0

The number of worker threads per node
manager for serving the map outputs to
reducers. This is a cluster-wide setting
and cannot be set by individual jobs. 0
means use the Netty default of twice the
number of available processors.

Table 7-2. Reduce-side tuning properties

Property name Type
mapreduce.reduce.shuf int 5
fle.parallelcopies
mapreduce.reduce.shuf int 10
fle.maxfetchfailures
mapreduce.task.io.sort.fac 1int 10
tor

mapreduce.reduce.shuf float 0.70
fle.input.buffer.percent
mapreduce.reduce.shuf float 0.66

fle.merge.percent

Default value Description

The number of threads used to copy map outputs to the
reducer.

The number of times a reducer tries to fetch a map
output before reporting the error.

The maximum number of streams to merge at once
when sorting files. This property is also used in the map.

The proportion of total heap size to be allocated to
the map outputs buffer during the copy phase of the
shuffle.

The threshold usage proportion for the map outputs
buffer (defined by mapred. job.shuffle.in
put.buffer.percent) for starting the process of
merging the outputs and spilling to disk.
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Property name Type  Default value Description

mapreduce.reduce.merge.in int 1000 The threshold number of map outputs for starting the
mem. threshold process of merging the outputs and spilling to
disk. A value of 0 or less means there is no threshold,
and the spill behavior is governed solely by mapre
duce.reduce.shuffle.merge.percent.

mapreduce.reduce.in float 0.0 The proportion of total heap size to be used for retaining

put.buffer.percent map outputs in memory during the reduce. For the
reduce phase to begin, the size of map outputs in
memory must be no more than this size. By default, all
map outputs are merged to disk before the reduce
begins, to give the reducers as much memory as
possible. However, if your reducers require less memory,
this value may be increased to minimize the number of
trips to disk.

Task Execution

We saw how the MapReduce system executes tasks in the context of the overall job at
the beginning of this chapter, in “Anatomy of a MapReduce Job Run” on page 185. In
this section, we’ll look at some more controls that MapReduce users have over task
execution.

The Task Execution Environment

Hadoop provides information to a map or reduce task about the environment in which
itis running. For example, a map task can discover the name of the file it is processing
(see “File information in the mapper” on page 227), and a map or reduce task can find out
the attempt number of the task. The properties in Table 7-3 can be accessed from the
job’s configuration, obtained in the old MapReduce API by providing an implementa-
tion of the configure() method for Mapper or Reducer, where the configuration is
passed in as an argument. In the new API, these properties can be accessed from the
context object passed to all methods of the Mapper or Reducer.

Table 7-3. Task environment properties

Property name Type Description Example

mapreduce.job.id  String  Thejob ID (see “Job, Task, job_200811201130_0004
and Task Attempt IDs” on

page 164 for a description

of the format)
mapreduce.task.id String ThetaskID task_200811201130_0004_m_000003
mapreduce.task.at String The task attempt ID attempt_200811201130_0004_m_000003_0

tempt.1id
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Property name Type Description Example

mapre int The index of the task 3
duce.task.parti within the job

tion

mapreduce.task.is boolean Whether this taskisa true
map map task

Streaming environment variables

Hadoop sets job configuration parameters as environment variables for Streaming pro-
grams. However, it replaces nonalphanumeric characters with underscores to make sure
they are valid names. The following Python expression illustrates how you can retrieve
the value of the mapreduce. job.id property from within a Python Streaming script:

os.environ["mapreduce_job_id"]

You can also set environment variables for the Streaming processes launched by Map-
Reduce by supplying the -cmdenv option to the Streaming launcher program (once for
each variable you wish to set). For example, the following sets the MAGIC_PARAMETER
environment variable:

-cmdenv MAGIC_PARAMETER=abracadabra

Speculative Execution

The MapReduce model is to break jobs into tasks and run the tasks in parallel to make
the overall job execution time smaller than it would be if the tasks ran sequentially. This
makes the job execution time sensitive to slow-running tasks, as it takes only one slow
task to make the whole job take significantly longer than it would have done otherwise.
When a job consists of hundreds or thousands of tasks, the possibility of a few straggling
tasks is very real.

Tasks may be slow for various reasons, including hardware degradation or software
misconfiguration, but the causes may be hard to detect because the tasks still complete
successfully, albeit after a longer time than expected. Hadoop doesn’t try to diagnose
and fix slow-running tasks; instead, it tries to detect when a task is running slower than
expected and launches another equivalent task as a backup. This is termed speculative
execution of tasks.

It's important to understand that speculative execution does not work by launching two
duplicate tasks at about the same time so they can race each other. This would be wasteful
of cluster resources. Rather, the scheduler tracks the progress of all tasks of the same
type (map and reduce) in a job, and only launches speculative duplicates for the small
proportion that are running significantly slower than the average. When a task com-
pletes successfully, any duplicate tasks that are running are killed since they are no longer

204 | Chapter7: How MapReduce Works



needed. So, if the original task completes before the speculative task, the speculative task
is killed; on the other hand, if the speculative task finishes first, the original is killed.

Speculative execution is an optimization, and not a feature to make jobs run more
reliably. If there are bugs that sometimes cause a task to hang or slow down, relying on
speculative execution to avoid these problems is unwise and won’t work reliably, since
the same bugs are likely to affect the speculative task. You should fix the bug so that the
task doesn’t hang or slow down.

Speculative execution is turned on by default. It can be enabled or disabled independ-
ently for map tasks and reduce tasks, on a cluster-wide basis, or on a per-job basis. The
relevant properties are shown in Table 7-4.

Table 7-4. Speculative execution properties

Property name Type Default value Description
mapreduce.map.specula boolean true Whether extra instances of map tasks
tive may be launched if a task is making
slow progress
mapreduce.reduce.specu  boolean true Whether extra instances of reduce
lative tasks may be launched if a task is
making slow progress
yarn.app.mapre Class org.apache.hadoop.map The Speculator dass
duce.am. job.specula reduce.v2.app.specu implementing the speculative
tor.class late.DefaultSpecula execution policy (MapReduce 2 only)
tor
yarn.app.mapre Class org.apache.hadoop.map  Animplementation of TaskRunti
duce.am. job.task.estima reduce.v2.app.specu meEstimator used by Specula
tor.class late.LegacyTaskRunti  tor instances that provides estimates
meEstimator for task runtimes (MapReduce 2 only)

Why would you ever want to turn speculative execution off? The goal of speculative
execution is to reduce job execution time, but this comes at the cost of cluster efficiency.
On abusy cluster, speculative execution can reduce overall throughput, since redundant
tasks are being executed in an attempt to bring down the execution time for a single job.
For this reason, some cluster administrators prefer to turn it off on the cluster and have
users explicitly turn it on for individual jobs. This was especially relevant for older
versions of Hadoop, when speculative execution could be overly aggressive in sched-
uling speculative tasks.

There is a good case for turning off speculative execution for reduce tasks, since any
duplicate reduce tasks have to fetch the same map outputs as the original task, and this
can significantly increase network traffic on the cluster.

Another reason for turning off speculative execution is for nonidempotent tasks. How-
ever, in many cases it is possible to write tasks to be idempotent and use an
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OutputCommitter to promote the output to its final location when the task succeeds.
This technique is explained in more detail in the next section.

Output Committers

Hadoop MapReduce uses a commit protocol to ensure that jobs and tasks either succeed
or fail cleanly. The behavior is implemented by the OutputCommitter in use for the job,
which is set in the old MapReduce API by calling the setOutputCommitter() on Job
Conf or by setting mapred.output.committer.class in the configuration. In the new
MapReduce API, the OutputCommitter is determined by the OutputFormat, via its
getOutputCommitter() method. The default is FileOutputCommitter, which is ap-
propriate for file-based MapReduce. You can customize an existing OutputCommitter
or even write a new implementation if you need to do special setup or cleanup for jobs
or tasks.

The OutputCommitter API is as follows (in both the old and new MapReduce APIs):

public abstract class OutputCommitter {

public abstract void setupJob(JobContext jobContext) throws IOException;

public void commitJob(JobContext jobContext) throws IOException { }

public void abortJob(JobContext jobContext, JobStatus.State state)
throws IOException { }

public abstract void setupTask(TaskAttemptContext taskContext)
throws IOException;
public abstract boolean needsTaskCommit(TaskAttemptContext taskContext)
throws IOException;
public abstract void commitTask(TaskAttemptContext taskContext)
throws IOException;
public abstract void abortTask(TaskAttemptContext taskContext)
throws IOException;

}
}

The setupJob() method is called before the job is run, and is typically used to perform
initialization. For FileOutputCommitter, the method creates the final output directory,
${mapreduce.output.fileoutputformat.outputdir}, and a temporary working
space for task output, _temporary, as a subdirectory underneath it.

If the job succeeds, the commitJob() method is called, which in the default file-based
implementation deletes the temporary working space and creates a hidden empty
marker file in the output directory called _SUCCESS to indicate to filesystem clients
that the job completed successfully. If the job did not succeed, abortJob() is called with
a state object indicating whether the job failed or was killed (by a user, for example). In
the default implementation, this will delete the job’s temporary working space.
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The operations are similar at the task level. The setupTask() method is called before
the task is run, and the default implementation doesn’t do anything, because temporary
directories named for task outputs are created when the task outputs are written.

The commit phase for tasks is optional and may be disabled by returning false from
needsTaskCommit(). This saves the framework from having to run the distributed
commit protocol for the task, and neither commitTask() nor abortTask() is called.
FileOutputCommitter will skip the commit phase when no output has been written by
a task.

If a task succeeds, commitTask() is called, which in the default implementation moves
the temporary task output directory (which has the task attempt ID in its name to avoid
conflicts between task attempts) to the final output path, ${mapreduce.output.fil
eoutputformat.outputdir}. Otherwise, the framework calls abortTask(), which de-
letes the temporary task output directory.

The framework ensures that in the event of multiple task attempts for a particular task,
only one will be committed; the others will be aborted. This situation may arise because
the first attempt failed for some reason—in which case, it would be aborted, and a later,
successful attempt would be committed. It can also occur if two task attempts were
running concurrently as speculative duplicates; in this instance, the one that finished
first would be committed, and the other would be aborted.

Task side-effect files

The usual way of writing output from map and reduce tasks is by using OutputCollec
tor to collect key-value pairs. Some applications need more flexibility than a single key-
value pair model, so these applications write output files directly from the map or reduce
task to a distributed filesystem, such as HDFES. (There are other ways to produce multiple
outputs, too, as described in “Multiple Outputs” on page 240.)

Care needs to be taken to ensure that multiple instances of the same task don't try to
write to the same file. As we saw in the previous section, the OutputCommitter protocol
solves this problem. If applications write side files in their tasks’ working directories,
the side files for tasks that successfully complete will be promoted to the output directory
automatically, whereas failed tasks will have their side files deleted.

A task may find its working directory by retrieving the value of the mapreduce. task. out
put.dir property from the job configuration. Alternatively, a MapReduce program us-
ing the Java API may call the getWorkOutputPath() static method on FileOutputFor
mat to get the Path object representing the working directory. The framework creates
the working directory before executing the task, so you don't need to create it.

To take a simple example, imagine a program for converting image files from one format
to another. One way to do this is to have a map-only job, where each map is given a set
of images to convert (perhaps using NLineInputFormat; see “NLinelnputFormat” on
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page 234). If a map task writes the converted images into its working directory, they will
be promoted to the output directory when the task successfully finishes.
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CHAPTER 8
MapReduce Types and Formats

MapReduce has a simple model of data processing: inputs and outputs for the map and
reduce functions are key-value pairs. This chapter looks at the MapReduce model in
detail, and in particular at how data in various formats, from simple text to structured
binary objects, can be used with this model.

MapReduce Types

The map and reduce functions in Hadoop MapReduce have the following general form:

map: (K1, V1) » list(K2, V2)
reduce: (K2, list(v2)) » list(K3, V3)

In general, the map input key and value types (K1 and V1) are different from the map
output types (K2 and V2). However, the reduce input must have the same types as the
map output, although the reduce output types may be different again (K3 and v3). The
Java API mirrors this general form:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public class Context extends MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
/) ...
}
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
/) ...
}
}

public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public class Context extends ReducerContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
/) ...
}
protected void reduce(KEYIN key, Iterable<VALUEIN> values,
Context context) throws IOException, InterruptedException {
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/) ...
}
}
The context objects are used for emitting key-value pairs, and they are parameterized
by the output types so that the signature of the write() method is:

public void write(KEYOUT key, VALUEOUT value)
throws IOException, InterruptedException

Since Mapper and Reducer are separate classes, the type parameters have different
scopes, and the actual type argument of KEYIN (say) in the Mapper may be different from
the type of the type parameter of the same name (KEYIN) in the Reducer. For instance,
in the maximum temperature example from earlier chapters, KEYIN is replaced by Long
Writable for the Mapper and by Text for the Reducer.

Similarly, even though the map output types and the reduce input types must match,
this is not enforced by the Java compiler.

The type parameters are named differently from the abstract types (KEYIN versus K1,
and so on), but the form is the same.

If a combiner function is used, then it has the same form as the reduce function (and is
an implementation of Reducer), except its output types are the intermediate key and
value types (K2 and V2), so they can feed the reduce function:

map: (K1, V1) » list(K2, V2)

combiner: (K2, list(V2)) » list(K2, V2)

reduce: (K2, list(V2)) » list(K3, V3)
Often the combiner and reduce functions are the same, in which case K3 is the same as
K2, and V3 is the same as V2.

The partition function operates on the intermediate key and value types (K2 and v2)
and returns the partition index. In practice, the partition is determined solely by the
key (the value is ignored):

partition: (K2, V2) -» integer
Or in Java:

public abstract class Partitioner<KEY, VALUE> {
public abstract int getPartition(KEY key, VALUE value, int numPartitions);

}
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MapReduce Signatures in the Old API

In the old API (see Appendix D), the signatures are very similar and actually name the
type parameters K1, V1, and so on, although the constraints on the types are exactly the
same in both the old and new APIs:

public interface Mapper<K1, V1, K2, V2> extends JobConfigurable, Closeable {
void map(K1 key, V1 value,
OutputCollector<K2, V2> output, Reporter reporter) throws IOException;
}

public interface Reducer<K2, V2, K3, V3> extends JobConfigurable, Closeable {
void reduce(K2 key, Iterator<V2> values,
OutputCollector<K3, V3> output, Reporter reporter) throws IOException;
}

public interface Partitioner<K2, V2> extends JobConfigurable {
int getPartition(K2 key, V2 value, int numPartitions);

}

So much for the theory. How does this help you configure MapReduce jobs? Table 8-1
summarizes the configuration options for the new API (and Table 8-2 does the same
for the old API). It is divided into the properties that determine the types and those that
have to be compatible with the configured types.

Input types are set by the input format. So, for instance, a TextInputFormat generates
keys of type LongWritable and values of type Text. The other types are set explicitly by
calling the methods on the Job (or JobConf in the old API). If not set explicitly, the
intermediate types default to the (final) output types, which default to LongWritable
and Text. So, if K2 and K3 are the same, you don’t need to call setMapOutputKey
Class(), because it falls back to the type set by calling setOutputKeyClass(). Similarly,
if V2 and V3 are the same, you only need to use setOutputValueClass().

It may seem strange that these methods for setting the intermediate and final output
types exist at all. After all, why can’t the types be determined from a combination of the
mapper and the reducer? The answer has to do with a limitation in Java generics: type
erasure means that the type information isn’t always present at runtime, so Hadoop has
to be given it explicitly. This also means that it's possible to configure a MapReduce job
with incompatible types, because the configuration isn't checked at compile time. The
settings that have to be compatible with the MapReduce types are listed in the lower
part of Table 8-1. Type conflicts are detected at runtime during job execution, and for
this reason, it is wise to run a test job using a small amount of data to flush out and fix
any type incompatibilities.
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The Default MapReduce Job

What happens when you run MapReduce without setting a mapper or a reducer? Let’s

try it by running this minimal MapReduce program:

public class MinimalMapReduce extends Configured implements Tool {

public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;

}

Job job = new Job(getConf());
job.setJarByClass(getClass());
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduce(), args);
System.exit(exitCode);
}
}

The only configuration that we set is an input path and an output path. We run it over

a subset of our weather data with the following:

% hadoop MinimalMapReduce "input/ncdc/all/190{1,2}.9z" output

We do get some output: one file named part-r-00000 in the output directory. Here’s what

the first few lines look like (truncated to fit the page):

0~0029029070999991901010106004+64333+023450FM-12+000599999V0202701N01591. ..
0-0035029070999991902010106004+64333+023450FM-12+000599999V0201401N01181. . .

135-0029029070999991901010113004+64333+023450FM-12+000599999V0202901N00821. . .
141-0035029070999991902010113004+64333+023450FM-12+000599999V0201401N01181. ..
270-0029029070999991901010120004+64333+023450FM-12+000599999V0209991C00001. . .
282-0035029070999991902010120004+64333+023450FM-12+000599999V0201401N01391. ..

Each line is an integer followed by a tab character, followed by the original weather data
record. Admittedly, it’s not a very useful program, but understanding how it produces
its output does provide some insight into the defaults that Hadoop uses when running
MapReduce jobs. Example 8-1 shows a program that has exactly the same effect as

MinimalMapReduce, but explicitly sets the job settings to their defaults.
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Example 8-1. A minimal MapReduce driver, with the defaults explicitly set

public class MinimalMapReduceWithDefaults extends Configured implements Tool {

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(Mapper.class);

job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);

job.setPartitionerClass(HashPartitioner.class);

job.setNumReduceTasks(1);
job.setReducerClass(Reducer.class);

job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);

job.setOutputFormatClass(TextOutputFormat.class);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduceWithDefaults(), args);
System.exit(exitCode);
}
}

We've simplified the first few lines of the run() method by extracting the logic for
printing usage and setting the input and output paths into a helper method. Almost all
MapReduce drivers take these two arguments (input and output), so reducing
the boilerplate code here is a good thing. Here are the relevant methods in the
JobButilder class for reference:

public static Job parseInputAndOutput(Tool tool, Configuration conf,
String[] args) throws IOException {

if (args.length != 2) {
printUsage(tool, "<input> <output>");
return null;

}

Job job = new Job(conf);

job.setJarByClass(tool.getClass());
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FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job;

}

public static void printUsage(Tool tool, String extraArgsUsage) {
System.err.printf("Usage: %s [genericOptions] %s\n\n",
tool.getClass().getSimpleName(), extraArgsUsage);
GenericOptionsParser.printGenericCommandUsage(System.err);

}

Going back to MinimalMapReduceWithDefaults in Example 8-1, although there are
many other default job settings, the ones bolded are those most central to running a job.
Let’s go through them in turn.

The default input format is TextInputFormat, which produces keys of type LongWrita
ble (the offset of the beginning of the line in the file) and values of type Text (the line
of text). This explains where the integers in the final output come from: they are the
line offsets.

The default mapper is just the Mapper class, which writes the input key and value un-
changed to the output:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);

}
}

Mapper is a generic type, which allows it to work with any key or value types. In this

case, the map input and output key is of type LonghWritable, and the map input and
output value is of type Text.

The default partitioner is HashPartitioner, which hashes a record’s key to determine
which partition the record belongs in. Each partition is processed by a reduce task, so
the number of partitions is equal to the number of reduce tasks for the job:

public class HashPartitioner<K, V> extends Partitioner<K, V> {

public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}

}
The key’s hash code is turned into a nonnegative integer by bitwise ANDing it with the
largest integer value. It is then reduced modulo the number of partitions to find the
index of the partition that the record belongs in.

216 | Chapter 8: MapReduce Types and Formats



By default, there is a single reducer, and therefore a single partition; the action of the
partitioner is irrelevant in this case since everything goes into one partition. However,
it is important to understand the behavior of HashPartitioner when you have more
than one reduce task. Assuming the key’s hash function is a good one, the records will
be allocated evenly across reduce tasks, with all records that share the same key being
processed by the same reduce task.

You may have noticed that we didn’t set the number of map tasks. The reason for this
is that the number is equal to the number of splits that the input is turned into, which
is driven by the size of the input and the file’s block size (if the file is in HDFS). The
options for controlling split size are discussed in “FileInputFormat input splits” on page
224.

Choosing the Number of Reducers

The single reducer default is something of a gotcha for new users to Hadoop. Almost
all real-world jobs should set this to a larger number; otherwise, the job will be very slow
since all the intermediate data flows through a single reduce task.

Choosing the number of reducers for a job is more of an art than a science. Increasing
the number of reducers makes the reduce phase shorter, since you get more parallelism.
However, if you take this too far, you can have lots of small files, which is suboptimal.
One rule of thumb is to aim for reducers that each run for five minutes or so, and which
produce at least one HDFS blocK’s worth of output.

The default reducer is Reducer, again a generic type, which simply writes all its input
to its output:

public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
Context context) throws IOException, InterruptedException {
for (VALUEIN values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
}
}

For this job, the output key is LongWritable and the output value is Text. In fact, all
the keys for this MapReduce program are LongWritable and all the values are Text,
since these are the input keys and values, and the map and reduce functions are both
identity functions, which by definition preserve type. Most MapReduce programs,
however, don’t use the same key or value types throughout, so you need to configure
the job to declare the types you are using, as described in the previous section.
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Records are sorted by the MapReduce system before being presented to the reducer. In
this case, the keys are sorted numerically, which has the effect of interleaving the lines
from the input files into one combined output file.

The default output format is TextOutputFormat, which writes out records, one per line,
by converting keys and values to strings and separating them with a tab character. This
is why the output is tab-separated: it is a feature of TextOutputFormat.

The default Streaming job

In Streaming, the default job is similar, but not identical, to the Java equivalent. The
basic form is:

% hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \

-input input/ncdc/sample.txt \

-output output \

-mapper /bin/cat
When we specify a non-Java mapper and the default text mode is in effect (-io text),
Streaming does something special. It doesn’t pass the key to the mapper process; it just
passes the value. (For other input formats, the same effect can be achieved by setting
stream.map.input.ignoreKey to true.) This is actually very useful because the key is
just the line offset in the file and the value is the line, which is all most applications are
interested in. The overall effect of this job is to perform a sort of the input.

With more of the defaults spelled out, the command looks like this (notice that Stream-
ing uses the old MapReduce API classes):

% hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \
-input input/ncdc/sample.txt \
-output output \
-inputformat org.apache.hadoop.mapred.TextInputFormat \
-mapper /bin/cat \
-partitioner org.apache.hadoop.mapred.lib.HashPartitioner \
-numReduceTasks 1 \
-reducer org.apache.hadoop.mapred.lib.IdentityReducer \
-outputformat org.apache.hadoop.mapred.TextOutputFormat
-io text

The -mapper and - reducer arguments take a command or a Java class. A combiner may
optionally be specified using the -combiner argument.

Keys and values in Streaming

A Streaming application can control the separator that is used when a key-value pair is
turned into a series of bytes and sent to the map or reduce process over standard input.
The default is a tab character, but it is useful to be able to change it in the case that the
keys or values themselves contain tab characters.
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Similarly, when the map or reduce writes out key-value pairs, they may be separated by
a configurable separator. Furthermore, the key from the output can be composed of
more than the first field: it can be made up of the first n fields (defined by
stream.num.map.output.key.fields or stream.num.reduce.output.key.fields),
with the value being the remaining fields. For example, if the output from a Streaming
processwas a, b, c (witha comma as the separator), and n was 2, the key would be parsed
as a,b and the value as c.

Separators may be configured independently for maps and reduces. The properties are
listed in Table 8-3 and shown in a diagram of the data flow path in Figure 8-1.

These settings do not have any bearing on the input and output formats. For example,
if stream.reduce.output. field.separator were set to be a colon, say, and the reduce
stream process wrote the line a:b to standard out, the Streaming reducer would know
to extract the key as a and the value as b. With the standard TextOutputFormat, this
record would be written to the output file with a tab separating a and b. You can change
the separator that TextOutputFormat uses by setting mapreduce.output. textoutput
format.separator.

Table 8-3. Streaming separator properties

Property name Type Default value Description
stream.map.in String \t The separator to use when passing the input key and value
put.field.separator strings to the stream map process as a stream of bytes
stream.map.out String \t The separator to use when splitting the output from the stream
put.field.separator map process into key and value strings for the map output
stream.num.map.out  int 1 The number of fields separated by
put.key.fields stream.map.output.field.separator
to treat as the map output key
stream.reduce.in String \t The separator to use when passing the input key and value
put.field.separator strings to the stream reduce process as a stream of bytes
stream.reduce.out String \t The separator to use when splitting the output from the stream
put.field.separator reduce process into key and value strings for the final reduce
output
stream.num.re int 1 The number of fields separated by
duce.out stream.reduce.output.field.separator
put.key.fields to treat as the reduce output key
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Figure 8-1. Where separators are used in a Streaming MapReduce job

Input Formats

Hadoop can process many different types of data formats, from flat text files to databases.
In this section, we explore the different formats available.

Input Splits and Records

Aswe saw in Chapter 2, an input split is a chunk of the input that is processed by a single
map. Each map processes a single split. Each split is divided into records, and the map
processes each record—a key-value pair—in turn. Splits and records are logical: there
is nothing that requires them to be tied to files, for example, although in their most
common incarnations, they are. In a database context, a split might correspond to a
range of rows from a table and a record to a row in that range (this is precisely the case
with DBInputFormat, which is an input format for reading data from a relational
database).

Input splits are represented by the Java class InputSplit (which, like all of the classes
mentioned in this section, is in the org.apache.hadoop.mapreduce package):!

public abstract class InputSplit {
public abstract long getlLength() throws IOException, InterruptedException;
public abstract String[] getlLocations() throws IOException,
InterruptedException;

}

An InputSplit hasalength in bytes and a set of storage locations, which are just host-
name strings. Notice that a split doesn’t contain the input data; it is just a reference to
the data. The storage locations are used by the MapReduce system to place map tasks
as close to the split’s data as possible, and the size is used to order the splits so that the

1. But see the classes in org.apache.hadoop.mapred for the old MapReduce API counterparts.
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largest get processed first, in an attempt to minimize the job runtime (this is an instance
of a greedy approximation algorithm).

As a MapReduce application writer, you don't need to deal with InputSplits directly,
as they are created by an InputFormat (an InputFormat is responsible for creating the
input splits and dividing them into records). Before we see some concrete examples of
InputFormats, let’s briefly examine how it is used in MapReduce. Here’s the interface:

public abstract class InputFormat<K, V> {
public abstract List<InputSplit> getSplits(JobContext context)
throws IOException, InterruptedException;

public abstract RecordReader<K, V>
createRecordReader (InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException;

}

The client running the job calculates the splits for the job by calling getSplits(), then
sends them to the application master, which uses their storage locations to schedule
map tasks that will process them on the cluster. The map task passes the split to the
createRecordReader() method on InputFormat to obtain a RecordReader for that
split. A RecordReader is little more than an iterator over records, and the map task uses
one to generate record key-value pairs, which it passes to the map function. We can see
this by looking at the Mapper’s run() method:

public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);

}

cleanup(context);

}

After running setup(), the nextKeyValue() is called repeatedly on the Context (which
delegates to the identically named method on the RecordReader) to populate the key
and value objects for the mapper. The key and value are retrieved from the RecordRead
er by way of the Context and are passed to the map() method for it to do its work. When
the reader gets to the end of the stream, the nextKeyValue() method returns false,
and the map task runs its cleanup() method and then completes.
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Although it's not shown in the code snippet, for reasons of efficien-
cy, RecordReader implementations will return the same key and
“ value objects on each call to getCurrentKey() and getCurrentval
ue(). Only the contents of these objects are changed by the read-
er’s nextKeyValue() method. This can be a surprise to users, who
might expect keys and values to be immutable and not to be reused.
This causes problems when a reference to a key or value object is
retained outside the map() method, as its value can change without
warning. If you need to do this, make a copy of the object you want
to hold on to. For example, for a Text object, you can use its copy
constructor: new Text(value).

The situation is similar with reducers. In this case, the value ob-
jects in the reducer’s iterator are reused, so you need to copy any that
you need to retain between calls to the iterator (see Example 9-11).

Finally, note that the Mapper’s run() method is public and may be customized by users.
MultithreadedMapper is an implementation that runs mappers concurrently in a con-
figurable number of threads (set by mapreduce.mapper.multithreadedmap
per.threads). For most data processing tasks, it confers no advantage over the default
implementation. However, for mappers that spend a long time processing each record
—because they contact external servers, for example—it allows multiple mappers to run
in one JVM with little contention.

FileInputFormat

FileInputFormat is the base class for all implementations of InputFormat that use files
as their data source (see Figure 8-2). It provides two things: a place to define which files
are included as the input to a job, and an implementation for generating splits for the
input files. The job of dividing splits into records is performed by subclasses.
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Figure 8-2. InputFormat class hierarchy
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FilelnputFormat input paths

The input to a job is specified as a collection of paths, which offers great flexibility in
constraining the input. FileInputFormat offers four static convenience methods for
setting a Job’s input paths:

public static void addInputPath(Job job, Path path)

public static void addInputPaths(Job job, String commaSeparatedPaths)

public static void setInputPaths(Job job, Path... inputPaths)
public static void setInputPaths(Job job, String commaSeparatedPaths)

The addInputPath() and addInputPaths() methods add a path or paths to the list of
inputs. You can call these methods repeatedly to build the list of paths. The setInput
Paths() methods set the entire list of paths in one go (replacing any paths set on the
Job in previous calls).

A path may represent a file, a directory, or, by using a glob, a collection of files and
directories. A path representing a directory includes all the files in the directory as input
to the job. See “File patterns” on page 66 for more on using globs.
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The contents of a directory specified as an input path are not pro-
cessed recursively. In fact, the directory should only contain files. If
“1 the directory contains a subdirectory, it will be interpreted as a file,
which will cause an error. The way to handle this case is to use a file
glob or a filter to select only the files in the directory based on a name
pattern. Alternatively, mapreduce.input.fileinputformat.in
put.dir.recursive can be set to true to force the input directory
to be read recursively.

The add and set methods allow files to be specified by inclusion only. To exclude certain
files from the input, you can set a filter using the setInputPathFilter() method on
FileInputFormat. Filters are discussed in more detail in “PathFilter” on page 67.

Even if you don’t set a filter, FileInputFormat uses a default filter that excludes hidden
files (those whose names begin with a dot or an underscore). If you set a filter by calling
setInputPathFilter(), it acts in addition to the default filter. In other words, only
nonhidden files that are accepted by your filter get through.

Paths and filters can be set through configuration properties, too (Table 8-4), which can
be handy for Streaming jobs. Setting paths is done with the -input option for the
Streaming interface, so setting paths directly usually is not needed.

Table 8-4. Input path and filter properties

Property name Default value Description

mapreduce.input.fil Comma-separated paths None The input files for a job. Paths that contain

einputformat.input commas should have those commas escaped by a

dir backslash character. For example, the glob
{a,b} would be escaped as {a\ ,b}.

mapreduce.in PathFilter None The filter to apply to the input files for a job.

put.pathFil classname

ter.class

FilelnputFormat input splits

Given a set of files, how does FileInputFormat turn them into splits? FileInputFor
mat splits only large files—here, “large” means larger than an HDFS block. The split size
is normally the size of an HDEFS block, which is appropriate for most applications;
however, it is possible to control this value by setting various Hadoop properties, as
shown in Table 8-5.
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Table 8-5. Properties for controlling split size

Property name Type Default value Description

mapreduce.input.filein 1int 1 The smallest valid size in

putformat.split.min bytes for a file split

size

mapreduce.input.filein long Long.MAX_VALUE (i.e., The largest valid size in

putformat.split.max 9223372036854775807) bytes for a file split

size?®

dfs.blocksize long 128 MB (i.e., 134217728) The size of a block in HDFS
in bytes

2This property is not present in the old MapReduce API (with the exception of CombineFileInputFormat). Instead, it is
calculated indirectly as the size of the total input for the job, divided by the guide number of map tasks specified by mapre
duce. job.maps (or the setNumMapTasks () method on JobConf). Because the number of map tasks defaults to 1,
this makes the maximum split size the size of the input.

The minimum split size is usually 1 byte, although some formats have a lower bound
on the split size. (For example, sequence files insert sync entries every so often in the
stream, so the minimum split size has to be large enough to ensure that every split has
a sync point to allow the reader to resynchronize with a record boundary. See “Reading
a SequenceFile” on page 129.)

Applications may impose a minimum split size. By setting this to a value larger than the
block size, they can force splits to be larger than a block. There is no good reason for
doing this when using HDFS, because doing so will increase the number of blocks that
are not local to a map task.

The maximum split size defaults to the maximum value that can be represented by a
Java long type. It has an effect only when it is less than the block size, forcing splits to
be smaller than a block.

The split size is calculated by the following formula (see the computeSplitSize()
method in FileInputFormat):

max(minimumSize, min(maximumSize, blockSize))
and by default:
minimumSize < blockSize < maximumSize

so the split size is blockSize. Various settings for these parameters and how they affect
the final split size are illustrated in Table 8-6.
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Table 8-6. Examples of how to control the split size

Minimum split size  Maximum split size Block size Split size  Comment

1 (default) Long.MAX_VALUE 128 MB 128 MB By default, the split size is the same as the
(default) (default) default block size.

1 (default) Long.MAX_VALUE 256 MB 256 MB  The most natural way to increase the split size
(default) is to have larger blocks in HDFS, either by

setting df's.blocks1ize or by configuring
this on a per-file basis at file construction time.

256 MB Long.MAX_VALUE 128 MB 256 MB  Making the minimum split size greater than
(default) (default) the block size increases the split size, but at
the cost of locality.
1 (default) 64 MB 128 MB 64 MB  Making the maximum split size less than the
(default) block size decreases the split size.

Small files and CombineFilelnputFormat

Hadoop works better with a small number of large files than a large number of small
files. One reason for this is that FileInputFormat generates splits in such a way that
each split is all or part of a single file. If the file is very small (“small” means significantly
smaller than an HDFS block) and there are a lot of them, each map task will process
very little input, and there will be a lot of them (one per file), each of which imposes
extra bookkeeping overhead. Compare a 1 GB file broken into eight 128 MB blocks with
10,000 or so 100 KB files. The 10,000 files use one map each, and the job time can be
tens or hundreds of times slower than the equivalent one with a single input file and
eight map tasks.

The situation is alleviated somewhat by CombineFileInputFormat, which was designed
to work well with small files. Where FileInputFormat creates a split per file,
CombineFileInputFormat packs many filesinto each split so that each mapper has more
to process. Crucially, CombineFileInputFormat takes node and rack locality into ac-
count when deciding which blocks to place in the same split, so it does not compromise
the speed at which it can process the input in a typical MapReduce job.

Of course, if possible, it is still a good idea to avoid the many small files case, because
MapReduce works best when it can operate at the transfer rate of the disks in the cluster,
and processing many small files increases the number of seeks that are needed to run a
job. Also, storing large numbers of small files in HDES is wasteful of the namenode’s
memory. One technique for avoiding the many small files case is to merge small files
into larger files by using a sequence file, as in Example 8-4; with this approach, the keys
can act as filenames (or a constant such as NullWritable, if not needed) and the values
as file contents. But if you already have a large number of small files in HDFS, then
CombineFileInputFormat is worth trying.
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CombineFileInputFormat isn’t just good for small files. It can bring
benefits when processing large files, too, since it will generate one split
per node, which may be made up of multiple blocks. Essentially,
CombineFileInputFormat decouples the amount of data that a map-
per consumes from the block size of the files in HDFS.

Preventing splitting

Some applications don’t want files to be split, as this allows a single mapper to process
each input file in its entirety. For example, a simple way to check if all the records in a
file are sorted is to go through the records in order, checking whether each record is not
less than the preceding one. Implemented as a map task, this algorithm will work only
if one map processes the whole file.?

There are a couple of ways to ensure that an existing file is not split. The first (quick-
and-dirty) way is to increase the minimum split size to be larger than the largest file in
your system. Setting it to its maximum value, Long.MAX_VALUE, has this effect. The
second is to subclass the concrete subclass of FileInputFormat that you want to use, to
override the isSplitable() method® to return false. For example, here’s a nonsplit-
table TextInputFormat:

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

public class NonSplittableTextInputFormat extends TextInputFormat {

protected boolean isSplitable(JobContext context, Path file) {
return false;
}
}

File information in the mapper

A mapper processing a file input split can find information about the split by calling
the getInputSplit() method on the Mapper’s Context object. When the input format
derives from FileInputFormat, the InputSplit returned by this method can be cast to
a FileSplit to access the file information listed in Table 8-7.

In the old MapReduce API, and the Streaming interface, the same file split information
is made available through properties that can be read from the mapper’s configuration.

2. This is how the mapper in SortValidator.RecordStatsChecker is implemented.

3. In the method name isSplitable(), “splitable” has a single “t” It is usually spelled “splittable,” which is the
spelling I have used in this book.
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(In the old MapReduce API this is achieved by implementing configure() in your
Mapper implementation to get access to the JobConf object.)

In addition to the properties in Table 8-7, all mappers and reducers have access to the
properties listed in “The Task Execution Environment” on page 203.

Table 8-7. File split properties

FileSplit method Property name Type Description

getPath() mapreduce.map.input.file Path/ The path of the input file being processed
String

getStart()  mapreduce.map.input.start long The byte offset of the start of the split from

the beginning of the file
getLength() mapreduce.map.input.length long The length of the split in bytes

In the next section, we’ll see how to use a FileSplit when we need to access the split’s
filename.

Processing a whole file as a record

A related requirement that sometimes crops up is for mappers to have access to the full
contents of a file. Not splitting the file gets you part of the way there, but you also need
to have a RecordReader that delivers the file contents as the value of the record. The
listing for WholeFileInputFormat in Example 8-2 shows a way of doing this.

Example 8-2. An InputFormat for reading a whole file as a record

public class WholeFileInputFormat
extends FileInputFormat<NullWritable, BytesWritable> {

protected boolean isSplitable(JobContext context, Path file) {
return false;

}

public RecordReader<NullWritable, BytesWritable> createRecordReader(
InputSplit split, TaskAttemptContext context) throws IOException,
InterruptedException {
WholeFileRecordReader reader = new WholeFileRecordReader();
reader.initialize(split, context);
return reader;

3
}

WholeFileInputFormat defines a format where the keys are not used, represented by
NullWritable, and the values are the file contents, represented by BytesWritable in-
stances. It defines two methods. First, the format is careful to specify that input files
should never be split, by overriding isSplitable() to return false. Second, we
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implement createRecordReader() to return a custom implementation of
RecordReader, which appears in Example 8-3.

Example 8-3. The RecordReader used by WholeFileInputFormat for reading a whole
file as a record

class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {

private FileSplit fileSplit;

private Configuration conf;

private BytesWritable value = new BytesWritable();
private boolean processed = false;

public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
this.fileSplit = (FileSplit) split;
this.conf = context.getConfiguration();

}

public boolean nextKeyValue() throws IOException, InterruptedException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
I0Utils.readFully(in, contents, 0, contents.length);
value.set(contents, 0, contents.length);
} finally {
I0Utils.closeStream(in);
}
processed = true;
return true;
}
return false;

}

public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
}

public BytesWritable getCurrentValue() throws IOException,
InterruptedException {
return value;

}
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public float getProgress() throws IOException {
return processed ? 1.0f : 0.0f;

}

public void close() throws IOException {
// do nothing
}
}

WholeFileRecordReader is responsible for taking a FileSplit and converting it into a
single record, with a null key and a value containing the bytes of the file. Because there
is only a single record, WholeFileRecordReader has either processed it or not, so it
maintains a Boolean called processed. If the file has not been processed when the
nextKeyValue() methodis called, then we open thefile, create a byte array whose length
is the length of the file, and use the Hadoop I0Ut1ils class to slurp the file into the byte
array. Then we set the array on the BytesWritable instance that was passed into the
next() method, and return true to signal that a record has been read.

The other methods are straightforward bookkeeping methods for accessing the current
key and value types and getting the progress of the reader, and a close() method, which
is invoked by the MapReduce framework when the reader is done.

To demonstrate how WholeFileInputFormat can be used, consider a MapReduce job
for packaging small files into sequence files, where the key is the original filename and
the value is the content of the file. The listing is in Example 8-4.

Example 8-4. A MapReduce program for packaging a collection of small files as a single
SequenceFile

public class SmallFilesToSequenceFileConverter extends Configured
implements Tool {

static class SequenceFileMapper
extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {

private Text filenameKey;

protected void setup(Context context) throws IOException,
InterruptedException {
InputSplit split = context.getInputSplit();
Path path = ((FileSplit) split).getPath();
filenameKey = new Text(path.toString());
}

protected void map(NullWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException {
context.write(filenameKey, value);
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public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setInputFormatClass(WholeFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);

job.setMapperClass(SequenceFileMapper.class);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(), args);
System.exit(exitCode);
}
}

Because the input format is a WholeFileInputFormat, the mapper only has to find the
filename for the input file split. It does this by casting the InputSplit from the context
to a FileSplit, which has a method to retrieve the file path. The path is stored in a Text
object for the key. The reducer is the identity (not explicitly set), and the output format
is a SequenceFileOutputFormat.

Here’s a run on a few small files. We've chosen to use two reducers, so we get two output
sequence files:

% hadoop jar hadoop-examples.jar SmallFilesToSequenceFileConverter \
-conf conf/hadoop-localhost.xml -D mapreduce.job.reduces=2 \
input/smallfiles output

Two part files are created, each of which is a sequence file. We can inspect these with
the - text option to the filesystem shell:

% hadoop fs -conf conf/hadoop-localhost.xml -text output/part-r-00000
hdfs://localhost/user/tom/input/smallfiles/a 61 61 61 61 61 61 61 61 61 61
hdfs://localhost/user/tom/input/smallfiles/c 63 63 63 63 63 63 63 63 63 63
hdfs://localhost/user/tom/input/smallfiles/e

% hadoop fs -conf conf/hadoop-localhost.xml -text output/part-r-00001
hdfs://localhost/user/tom/input/smallfiles/b 62 62 62 62 62 62 62 62 62 62
hdfs://localhost/user/tom/input/smallfiles/d 64 64 64 64 64 64 64 64 64 64
hdfs://localhost/user/tom/input/smallfiles/f 66 66 66 66 66 66 66 66 66 66
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The input files were named a, b, ¢, d, e, and f, and each contained 10 characters of the
corresponding letter (so, for example, a contained 10 “a” characters), except e, which
was empty. We can see this in the textual rendering of the sequence files, which prints

the filename followed by the hex representation of the file.

There’s at least one way we could improve this program. As men-
tioned earlier, having one mapper per file is inefficient, so subclass-
ing CombineFileInputFormat instead of FileInputFormat would be
a better approach.

Text Input

Hadoop excels at processing unstructured text. In this section, we discuss the different
InputFormats that Hadoop provides to process text.

TextInputFormat

TextInputFormat is the default InputFormat. Each record is a line of input. The key, a
LongWritable, is the byte offset within the file of the beginning of the line. The value is
the contents of the line, excluding any line terminators (e.g., newline or carriage return),
and is packaged as a Text object. So, a file containing the following text:

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.

is divided into one split of four records. The records are interpreted as the following
key-value pairs:

(0, On the top of the Crumpetty Tree)

(33, The Quangle Wangle sat,)

(57, But his face you could not see,)
(89, On account of his Beaver Hat.)

Clearly, the keys are notline numbers. This would be impossible to implement in general,
in that a file is broken into splits at byte, not line, boundaries. Splits are processed
independently. Line numbers are really a sequential notion. You have to keep a count
of lines as you consume them, so knowing the line number within a split would be
possible, but not within the file.

However, the offset within the file of each line is known by each split independently of
the other splits, since each split knows the size of the preceding splits and just adds this
onto the offsets within the split to produce a global file offset. The offset is usually
sufficient for applications that need a unique identifier for each line. Combined with
the file’s name, it is unique within the filesystem. Of course, if all the lines are a fixed
width, calculating the line number is simply a matter of dividing the offset by the width.
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The Relationship Between Input Splits and HDFS Blocks

The logical records that FileInputFormats define usually do not fit neatly into HDFS
blocks. For example, a TextInputFormat’s logical records are lines, which will cross
HDEFS boundaries more often than not. This has no bearing on the functioning of your
program—lines are not missed or broken, for example—but it’s worth knowing about
because it does mean that data-local maps (that is, maps that are running on the same
hostas their input data) will perform some remote reads. The slight overhead this causes
is not normally significant.

Figure 8-3 shows an example. A single file is broken into lines, and the line boundaries
do not correspond with the HDES block boundaries. Splits honor logical record bound-
aries (in this case, lines), so we see that the first split contains line 5, even though it spans
the first and second block. The second split starts at line 6.

split split split
file
est 1 [ 2 [ 3] 4 [s] 6 [7]8] 9 |10 [mn
block block block block
boundary boundary boundary boundary

Figure 8-3. Logical records and HDFS blocks for TextInputFormat

Controlling the maximum line length. If you are using one of the text input formats dis-
cussed here, you can set a maximum expected line length to safeguard against corrupted
files. Corruption in a file can manifest itself as a very long line, which can cause out-of-
memory errors and then task failure. By setting mapreduce.input.linerecordread
er.line.maxlength to a value in bytes that fits in memory (and is comfortably greater
than the length of lines in your input data), you ensure that the record reader will skip
the (long) corrupt lines without the task failing.

KeyValueTextInputFormat

TextInputFormat’s keys, being simply the offsets within the file, are not normally very
useful. It is common for each line in a file to be a key-value pair, separated by a delimiter
such as a tab character. For example, this is the kind of output produced by TextOut
putFormat, Hadoop’s default OutputFormat. To interpret such files correctly, KeyValue
TextInputFormat is appropriate.

You can specify the separator via the mapreduce.input.keyvaluelinere
cordreader.key.value.separator property. It is a tab character by default. Consider
the following input file, where — represents a (horizontal) tab character:
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1ine1-0n the top of the Crumpetty Tree
1ine2»The Quangle Wangle sat,
1ine3-But his face you could not see,
1ine4-0n account of his Beaver Hat.

Like in the TextInputFormat case, the input is in a single split comprising four records,
although this time the keys are the Text sequences before the tab in each line:

(linel, On the top of the Crumpetty Tree)
(line2, The Quangle Wangle sat,)

(line3, But his face you could not see,)
(line4, On account of his Beaver Hat.)

NLinelnputFormat

With TextInputFormat and KeyValueTextInputFormat, each mapper receives a vari-
able number oflines of input. The number depends on the size of the split and the length
of the lines. If you want your mappers to receive a fixed number of lines of input, then
NLineInputFormat is the InputFormat to use. Like with TextInputFormat, the keys are
the byte offsets within the file and the values are the lines themselves.

N refers to the number of lines of input that each mapper receives. With N set to 1 (the
default), each mapper receives exactly one line of input. The mapreduce.input.line
inputformat.linespermap property controls the value of N. By way of example, con-
sider these four lines again:

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.

If, for example, N is 2, then each split contains two lines. One mapper will receive the
first two key-value pairs:

(0, On the top of the Crumpetty Tree)
(33, The Quangle Wangle sat,)

And another mapper will receive the second two key-value pairs:

(57, But his face you could not see,)
(89, On account of his Beaver Hat.)

The keys and values are the same as those that TextInputFormat produces. The differ-
ence is in the way the splits are constructed.

Usually, having a map task for a small number of lines of input is inefficient (due to the
overhead in task setup), but there are applications that take a small amount of input
data and run an extensive (i.e., CPU-intensive) computation for it, then emit their out-
put. Simulations are a good example. By creating an input file that specifies input pa-
rameters, one per line, you can perform a parameter sweep: run a set of simulations in
parallel to find how a model varies as the parameter changes.
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If you have long-running simulations, you may fall afoul of task
timeouts. When a task doesn’t report progress for more than 10
“1 minutes, the application master assumes it has failed and aborts the
process (see “Task Failure” on page 193).

The best way to guard against this is to report progress periodical-
ly, by writing a status message or incrementing a counter, for exam-
ple. See “What Constitutes Progress in MapReduce?” on page 191.

Another example is using Hadoop to bootstrap data loading from multiple data
sources, such as databases. You create a “seed” input file that lists the data sources, one
per line. Then each mapper is allocated a single data source, and it loads the data from
that source into HDFS. The job doesn’t need the reduce phase, so the number of reducers
should be set to zero (by calling setNumReduceTasks() on Job). Furthermore,
MapReduce jobs can be run to process the data loaded into HDFS. See Appendix C for
an example.

XML

Most XML parsers operate on whole XML documents, so if a large XML document is
made up of multiple input splits, it is a challenge to parse these individually. Of course,
you can process the entire XML document in one mapper (if it is not too large) using
the technique in “Processing a whole file as a record” on page 228.

Large XML documents that are composed of a series of “records” (XML document
fragments) can be broken into these records using simple string or regular-expression
matching to find the start and end tags of records. This alleviates the problem when the
document is split by the framework because the next start tag of a record is easy to find
by simply scanning from the start of the split, just like TextInputFormat finds newline
boundaries.

Hadoop comes with a class for this purpose called StreamXmlRecordReader (which is
in the org.apache.hadoop.streaming.mapreduce package, although it can be used
outside of Streaming). You can use it by setting your input format to StreamInputFor
mat and setting the stream.recordreader.class property to org.apache.ha
doop.streaming.mapreduce.StreamXmlRecordReader. The reader is configured by
setting job configuration properties to tell it the patterns for the start and end tags (see
the class documentation for details).*

To take an example, Wikipedia provides dumps of its content in XML form, which are
appropriate for processing in parallel with MapReduce using this approach. The data is
contained in one large XML wrapper document, which contains a series of elements,

4. See Mahout’s XmlInputFormat for an improved XML input format.
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such as page elements that contain a page’s content and associated metadata. Using
StreamXmlRecordReader, the page elements can be interpreted as records for processing
by a mapper.

Binary Input

Hadoop MapReduce is not restricted to processing textual data. It has support for binary
formats, too.

SequenceFilelnputFormat

Hadoop’s sequence file format stores sequences of binary key-value pairs. Sequence files
are well suited as a format for MapReduce data because they are splittable (they have
sync points so that readers can synchronize with record boundaries from an arbitrary
point in the file, such as the start of a split), they support compression as a part of the
format, and they can store arbitrary types using a variety of serialization frameworks.
(These topics are covered in “SequenceFile” on page 127.)

To use data from sequence files as the input to MapReduce, you can use SequenceFi
leInputFormat. The keys and values are determined by the sequence file, and you need
to make sure that your map input types correspond. For example, if your sequence file
has IntWritable keys and Text values, like the one created in Chapter 5, then the map
signature would be Mapper<IntWritable, Text, K, V>, where K and V are the types
of the map’s output keys and values.

Although its name doesn't give it away, SequenceFileInputFormat
can read map files as well as sequence files. If it finds a directory where
it was expecting a sequence file, SequenceFileInputFormat assumes
that it is reading a map file and uses its datafile. This is why there is
no MapFileInputFormat class.

SequenceFileAsTextInputFormat

SequenceFileAsTextInputFormat is a variant of SequenceFileInputFormat that con-
verts the sequence file’s keys and values to Text objects. The conversion is performed
by calling toString() on the keys and values. This format makes sequence files suitable
input for Streaming.

SequenceFileAsBinarylnputFormat

SequenceFileAsBinaryInputFormat isavariant of SequenceFileInputFormat that re-
trieves the sequence file’s keys and values as opaque binary objects. They are encapsu-
lated as BytesWritable objects, and the application is free to interpret the underlying
byte array as it pleases. In combination with a process that creates sequence files with
SequenceFile.Writer’s appendRaw() method or
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SequenceFileAsBinaryOutputFormat, this provides a way to use any binary data types
with MapReduce (packaged as a sequence file), although plugging into Hadoop’s seri-
alization mechanism is normally a cleaner alternative (see “Serialization Frameworks”
on page 126).

FixedLengthinputFormat

FixedLengthInputFormat is for reading fixed-width binary records from a file, when
the records are not separated by delimiters. The record size must be set via fixed
lengthinputformat.record.length.

Multiple Inputs

Although the input to a MapReduce job may consist of multiple input files (constructed
by a combination of file globs, filters, and plain paths), all of the input is interpreted by
asingle InputFormat and a single Mapper. What often happens, however, is that the data
format evolves over time, so you have to write your mapper to cope with all of your
legacy formats. Or you may have data sources that provide the same type of data but in
different formats. This arises in the case of performing joins of different datasets; see
“Reduce-Side Joins” on page 270. For instance, one might be tab-separated plain text,and
the other a binary sequence file. Even if they are in the same format, they may have
different representations, and therefore need to be parsed differently.

These cases are handled elegantly by using the MultipleInputs class, which allows you
to specify which InputFormat and Mapper to use on a per-path basis. For example, if we
had weather data from the UK Met Office® that we wanted to combine with the NCDC
data for our maximum temperature analysis, we might set up the input as follows:

MultipleInputs.addInputPath(job, ncdcInputPath,
TextInputFormat.class, MaxTemperatureMapper.class);

MultipleInputs.addInputPath(job, metOfficeInputPath,
TextInputFormat.class, MetOfficeMaxTemperatureMapper.class);

This code replaces the usual calls to FileInputFormat.addInputPath() and job.set
MapperClass(). Both the Met Office and NCDC data are text based, so we use
TextInputFormat for each. But the line format of the two data sources is different, so
we use two different mappers. The MaxTemperatureMapper reads NCDC input data and
extracts the year and temperature fields. The MetOfficeMaxTemperatureMapper reads
Met Office input data and extracts the year and temperature fields. The important thing
is that the map outputs have the same types, since the reducers (which are all of the
same type) see the aggregated map outputs and are not aware of the different mappers
used to produce them.

5. Met Office data is generally available only to the research and academic community. However, there is a small
amount of monthly weather station data available at http://www.metoffice.gov.uk/climate/uk/stationdata/.
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The MultipleInputs class has an overloaded version of addInputPath() that doesn’t
take a mapper:

public static void addInputPath(Job job, Path path,
Class<? extends InputFormat> inputFormatClass)

This is useful when you only have one mapper (set using the Job’s setMapperClass()
method) but multiple input formats.

Database Input (and Output)

DBInputFormat is an input format for reading data from a relational database, using
JDBC. Because it doesn’t have any sharding capabilities, you need to be careful not to
overwhelm the database from which you are reading by running too many mappers.
For this reason, it is best used for loading relatively small datasets, perhaps for joining
with larger datasets from HDEFS using MultipleInputs. The corresponding output

format is DBOutputFormat, which is useful for dumping job outputs (of modest size)
into a database.

For an alternative way of moving data between relational databases and HDFS, consider
using Sqoop, which is described in Chapter 15.

HBase’s TableInputFormat is designed to allow a MapReduce program to operate on
data stored in an HBase table. TableOutputFormat is for writing MapReduce outputs
into an HBase table.

Output Formats

Hadoop has output data formats that correspond to the input formats covered in the
previous section. The OutputFormat class hierarchy appears in Figure 8-4.
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TextOutputFormat<K, V>

SequenceFileAsBinary

< OutputFormat

OutputFormat<K,V> P FileOutputFormat
org.apache.hadoop.mapreduce <K, V>

SequenceFile
OutputFormat<K, V>

NullOutputFormat
<K, V>

DBOutputFormat<K, V>

FilterOutputFormat

<KV < LazyOutputFormat<K, V>

Figure 8-4. OutputFormat class hierarchy

Text Output

The default output format, TextOutputFormat, writes records as lines of text. Its keys
and values may be of any type, since TextOutputFormat turns them to strings by calling
toString() on them. Each key-value pair is separated by a tab character, although that
may be changed using the mapreduce.output. textoutputformat.separator proper-
ty. The counterpart to TextOutputFormat for reading in this case is KeyValue

TextInputFormat, since it breaks lines into key-value pairs based on a configurable
separator (see “KeyValueTextInputFormat” on page 233).

You can suppress the key or the value from the output (or both, making this output
format equivalent to NullOutputFormat, which emits nothing) using a NullWritable
type. This also causes no separator to be written, which makes the output suitable for
reading in using TextInputFormat.

Binary Output

SequenceFileOutputFormat

As the name indicates, SequenceFileOutputFormat writes sequence files for its output.
This is a good choice of output if it forms the input to a further MapReduce job, since
itis compactand is readily compressed. Compression is controlled via the static methods
on SequenceFileOutputFormat, as described in “Using Compression in MapReduce”
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on page 107. For an example of how to use SequenceFileOutputFormat, see “Sorting”
on page 255.

SequenceFileAsBinaryOutputFormat

SequenceFileAsBinaryOutputFormat—the counterpart to SequenceFileAsBinaryIn
putFormat—writes keys and values in raw binary format into a sequence file container.

MapFileQutputFormat

MapFileOutputFormat writes map files as output. The keys in a MapFile must be added
in order, so you need to ensure that your reducers emit keys in sorted order.

The reduce input keys are guaranteed to be sorted, but the output keys
are under the control of the reduce function, and there is nothing in
the general MapReduce contract that states that the reduce output
keys have to be ordered in any way. The extra constraint of sorted
reduce output keys is just needed for MapFileOutputFormat.

Multiple Outputs

FileOutputFormatanditssubclasses generate a set of files in the output directory. There
is one file per reducer, and files are named by the partition number: part-r-00000, part-
r-00001, and so on. Sometimes there is a need to have more control over the naming of
the files or to produce multiple files per reducer. MapReduce comes with the Multi
pleOutputs class to help you do this.®

An example: Partitioning data

Consider the problem of partitioning the weather dataset by weather station. We would
like to run a job whose output is one file per station, with each file containing all the
records for that station.

One way of doing this is to have a reducer for each weather station. To arrange this, we
need to do two things. First, write a partitioner that puts records from the same weather
station into the same partition. Second, set the number of reducers on the job to be the
number of weather stations. The partitioner would look like this:

6. The old MapReduce API includes two classes for producing multiple outputs: MultipleOutputFormat and
MultipleOutputs. Ina nutshell, MultipleOutputs is more fully featured, but MultipleOutputFormat has
more control over the output directory structure and file naming. MultipleOutputs in the new API com-
bines the best features of the two multiple output classes in the old APIL. The code on this book’s website
includes old API equivalents of the examples in this section using both MultipleOutputs and MultipleOut
putFormat.
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public class StationPartitioner extends Partitioner<LongWritable, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

public int getPartition(LongWritable key, Text value, int numPartitions) {
parser.parse(value);
return getPartition(parser.getStationId());

}

private int getPartition(String stationId) {
}
}

The getPartition(String) method, whose implementation is not shown, turns the
station ID into a partition index. To do this, it needs a list of all the station IDs; it then
just returns the index of the station ID in the list.

There are two drawbacks to thisapproach. The first is that since the number of partitions
needs to be known before the job is run, so does the number of weather stations. Al-
though the NCDC provides metadata about its stations, there is no guarantee that the
IDs encountered in the data will match those in the metadata. A station that appears in
the metadata but not in the data wastes a reduce task. Worse, a station that appears in
the data but not in the metadata doesn't get a reduce task; it has to be thrown away. One
way of mitigating this problem would be to write a job to extract the unique station IDs,
but it’s a shame that we need an extra job to do this.

The second drawback is more subtle. It is generally a bad idea to allow the number of
partitions to be rigidly fixed by the application, since this can lead to small or uneven-
sized partitions. Having many reducers doing a small amount of work isn’t an efficient
way of organizing a job; it’s much better to get reducers to do more work and have fewer
of them, as the overhead in running a task is then reduced. Uneven-sized partitions can
be difficult to avoid, too. Different weather stations will have gathered a widely varying
amount of data; for example, compare a station that opened one year ago to one that
has been gathering data for a century. If a few reduce tasks take significantly longer than
the others, they will dominate the job execution time and cause it to be longer than it
needs to be.
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There are two special cases when it does make sense to allow the
application to set the number of partitions (or equivalently, the num-
ber of reducers):

Zero reducers
This is a vacuous case: there are no partitions, as the applica-
tion needs to run only map tasks.

One reducer
It can be convenient to run small jobs to combine the output of
previous jobs into a single file. This should be attempted only
when the amount of data is small enough to be processed com-
fortably by one reducer.

It is much better to let the cluster drive the number of partitions for a job, the idea being
that the more cluster resources there are available, the faster the job can complete. This
is why the default HashPartitioner works so well: it works with any number of parti-
tions and ensures each partition has a good mix of keys, leading to more evenly sized
partitions.

If we go back to using HashPartitioner, each partition will contain multiple stations,
so to create a file per station, we need to arrange for each reducer to write multiple files.
This is where MultipleQutputs comes in.

MultipleQutputs

MultipleOutputs allows you to write data to files whose names are derived from the
output keys and values, or in fact from an arbitrary string. This allows each reducer (or
mapper in a map-only job) to create more than a single file. Filenames are of the form
name-m-nnnnn for map outputs and name-r-nnnnn for reduce outputs, where name is an
arbitrary name that is set by the program and nnnnn is an integer designating the part
number, starting from 00000. The part number ensures that outputs written from dif-
ferent partitions (mappers or reducers) do not collide in the case of the same name.

The program in Example 8-5 shows how to use MultipleOutputs to partition the dataset
by station.

Example 8-5. Partitioning whole dataset into files named by the station ID using
MultipleOutputs

public class PartitionByStationUsingMultipleOutputs extends Configured
implements Tool {

static class StationMapper
extends Mapper<LongWritable, Text, Text, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();
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protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
parser.parse(value);
context.write(new Text(parser.getStationId()), value);
}
}

static class MultipleOutputsReducer
extends Reducer<Text, Text, NullWritable, Text> {

private MultipleOutputs<NullWritable, Text> multipleOutputs;

protected void setup(Context context)
throws IOException, InterruptedException {
multipleOutputs = new MultipleOutputs<NullWritable, Text>(context);

}

protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
for (Text value : values) {
multipleOutputs.write(NullWritable.get(), value, key.toString());
}
}

protected void cleanup(Context context)
throws IOException, InterruptedException {
multipleOutputs.close();
}
}

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setMapperClass(StationMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setReducerClass(MultipleOutputsReducer.class);
job.setOutputKeyClass(NullWritable.class);

return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new PartitionByStationUsingMultipleOutputs(),
args);
System.exit(exitCode);
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3
}

In the reducer, which is where we generate the output, we construct an instance of
MultipleOutputs in the setup() method and assign it to an instance variable. We then
use the MultipleOutputs instance in the reduce() method to write to the output, in
place of the context. The write() method takes the key and value, as well as a name.
We use the station identifier for the name, so the overall effect is to produce output files
with the naming scheme station_identifier-r-nnnnn.

In one run, the first few output files were named as follows:

output/010010-99999-r-00027
output/010050-99999-r-00013
output/010100-99999-r-00015
output/010280-99999-r-00014
output/010550-99999-r-00000
output/010980-99999-r-00011
output/011060-99999-r-00025
output/012030-99999-r-00029
output/012350-99999-r-00018
output/012620-99999-r-00004

The base path specified in the write() method of MultipleOutputs is interpreted rel-
ative to the output directory, and because it may contain file path separator characters
(/), it's possible to create subdirectories of arbitrary depth. For example, the following
modification partitions the data by station and year so that each year’s data is contained
in a directory named by the station ID (such as 029070-99999/1901/part-r-00000):

protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
for (Text value : values) {
parser.parse(value);
String basePath = String.format("%s/%s/part",
parser.getStationId(), parser.getYear());
multipleOutputs.write(NullWritable.get(), value, basePath);
}
}

MultipleOutputs delegates to the mapper’s OutputFormat. In this example it’s a Tex
tOutputFormat, but more complex setups are possible. For example, you can create
named outputs, each with its own OutputFormat and key and value types (which may
differ from the output types of the mapper or reducer). Furthermore, the mapper or
reducer (or both) may write to multiple output files for each record processed. Consult
the Java documentation for more information.
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Lazy Output

FileOutputFormat subclasses will create output (part-r-nnnnn) files, even if they are
empty. Some applications prefer that empty files not be created, which is where Lazy
OutputFormat helps. It is a wrapper output format that ensures that the output file is
created only when the first record is emitted for a given partition. To use it, call its
setOutputFormatClass() method with the JobConf and the underlying output format.

Streaming supports a -lazyOutput option to enable LazyOutputFormat.

Database Output

The output formats for writing to relational databases and to HBase are mentioned in
“Database Input (and Output)” on page 238.
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CHAPTER 9
MapReduce Features

This chapter looks at some of the more advanced features of MapReduce, including
counters and sorting and joining datasets.

Counters

There are often things that you would like to know about the data you are analyzing but
that are peripheral to the analysis you are performing. For example, if you were counting
invalid records and discovered that the proportion of invalid records in the whole
dataset was very high, you might be prompted to check why so many records were being
marked as invalid—perhaps there is a bug in the part of the program that detects invalid
records? Or if the data was of poor quality and genuinely did have very many invalid
records, after discovering this, you might decide to increase the size of the dataset so
that the number of good records was large enough for meaningful analysis.

Counters are a useful channel for gathering statistics about the job: for quality control
or for application-level statistics. They are also useful for problem diagnosis. If you are
tempted to put a log message into your map or reduce task, it is often better to see
whether you can use a counter instead to record that a particular condition occurred.
In addition to counter values being much easier to retrieve than log output for large
distributed jobs, you get a record of the number of times that condition occurred, which
is more work to obtain from a set of logfiles.

Built-in Counters

Hadoop maintains some built-in counters for every job, and these report various met-
rics. For example, there are counters for the number of bytes and records processed,
which allow you to confirm that the expected amount of input was consumed and the
expected amount of output was produced.
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Counters are divided into groups, and there are several groups for the built-in counters,
listed in Table 9-1.

Table 9-1. Built-in counter groups

Group Name/Enum Reference
MapReduce task counters org.apache.hadoop.mapreduce.TaskCounter Table 9-2
Filesystem counters org.apache.hadoop.mapreduce.FileSystemCounter Table 9-3

FileInputFormat counters org.apache.hadoop.mapreduce.lib.input.FileInputFor Table 9-4
matCounter

FileOutputFormat counters org.apache.hadoop.mapreduce.lib.output.FileOutput  Table 9-5
FormatCounter

Job counters org.apache.hadoop.mapreduce.JobCounter Table 9-6

Each group either contains task counters (which are updated as a task progresses) or
job counters (which are updated as a job progresses). We look at both types in the fol-
lowing sections.

Task counters

Task counters gather information about tasks over the course of their execution, and
the results are aggregated over all the tasks in a job. The MAP_INPUT_RECORDS counter,
for example, counts the input records read by each map task and aggregates over all
map tasks in a job, so that the final figure is the total number of input records for the
whole job.

Task counters are maintained by each task attempt, and periodically sent to the appli-
cation master so they can be globally aggregated. (This is described in “Progress and
Status Updates” on page 190.) Task counters are sent in full every time, rather than
sending the counts since the last transmission, since this guards against errors due to
lost messages. Furthermore, during a job run, counters may go down if a task fails.

Counter values are definitive only once a job has successfully completed. However, some
counters provide useful diagnostic information as a task is progressing, and it can be
useful to monitor them with the web UI. For example, PHYSICAL_MEMORY_BYTES,
VIRTUAL_MEMORY_BYTES, and COMMITTED_HEAP_BYTES provide an indication of how
memory usage varies over the course of a particular task attempt.

The built-in task counters include those in the MapReduce task counters group
(Table 9-2) and those in the file-related counters groups (Tables 9-3, 9-4, and 9-5).
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Table 9-2. Built-in MapReduce task counters

Counter Description

Map input records (MAP_INPUT_RECORDS) The number of input records consumed by all the maps in the job.
Incremented every time a record is read from a RecordReader and
passed to the map’s map () method by the framework.

Split raw bytes (SPLIT_RAW_BYTES) The number of bytes of input-split objects read by maps. These objects
represent the split metadata (that is, the offset and length within a
file) rather than the split data itself, so the total size should be small.

Map output records (MAP_OUTPUT_RECORDS) The number of map output records produced by all the maps in the
job. Incremented every time the collect () method is called on a
map’s OutputCollector.

Map output bytes (MAP_OUTPUT_BYTES) The number of bytes of uncompressed output produced by all the
maps in the job. Incremented every time the collect() method is
called on a map’s OutputCollector.

Map output materialized bytes The number of bytes of map output actually written to disk. If map
(MAP_OUTPUT_MATERIALIZED_BYTES) output compression is enabled, this is reflected in the counter value.
Combine input records The number of input records consumed by all the combiners (if any) in
(COMBINE_INPUT_RECORDS) the job. Incremented every time a value is read from the combiner’s

iterator over values. Note that this count is the number of values
consumed by the combiner, not the number of distinct key groups
(which would not be a useful metric, since there is not necessarily one
group per key for a combiner; see “Combiner Functions” on page 34,
and also “Shuffle and Sort” on page 197).

Combine output records The number of output records produced by all the combiners (if any) in
(COMBINE_OUTPUT_RECORDS) the job. Incremented every time the collect () method is called on
a combiner’s OutputCollector.

Reduce input groups (REDUCE_INPUT_GROUPS)  The number of distinct key groups consumed by all the reducers in the
job. Incremented every time the reducer's reduce () method is called

by the framework.
Reduce input records The number of input records consumed by all the reducers in the job.
(REDUCE_INPUT_RECORDS) Incremented every time a value is read from the reducer’s iterator over

values. If reducers consume all of their inputs, this count should be the
same as the count for map output records.

Reduce output records The number of reduce output records produced by all the maps in the
(REDUCE_OUTPUT_RECORDS) job. Incremented every time the collect() method is called on a
reducer’s OutputCollector.
Reduce shuffle bytes The number of bytes of map output copied by the shuffle to reducers.
(REDUCE_SHUFFLE_BYTES)
Spilled records (SPILLED_RECORDS) The number of records spilled to disk in all map and reduce tasks in the
job.
CPU milliseconds (CPU_MILLISECONDS) The cumulative CPU time for a task in milliseconds, as reported
by /proc/cpuinfo.
Physical memory bytes The physical memory being used by a task in bytes, as reported
(PHYSICAL_MEMORY_BYTES) by /proc/meminfo.
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Counter Description

Virtual memory bytes The virtual memory being used by a task in bytes, as reported

(VIRTUAL_MEMORY_BYTES) by /proc/meminfo.

Committed heap bytes The total amount of memory available in the JVM in bytes, as reported

(COMMITTED_HEAP_BYTES) by Runtime.getRuntime().totalMemory().

GC time milliseconds (GC_TIME_MILLIS) The elapsed time for garbage collection in tasks in milliseconds, as
reported by GarbageCollectorMXBean.getCollection
Time().

Shuffled maps (SHUFFLED_MAPS) The number of map output files transferred to reducers by the shuffle
(see “Shuffle and Sort” on page 197).

Failed shuffle (FAILED_SHUFFLE) The number of map output copy failures during the shuffle.

Merged map outputs (MERGED_MAP_OUTPUTS)  The number of map outputs that have been merged on the reduce side
of the shuffle.

Table 9-3. Built-in filesystem task counters

Counter Description

Filesystem bytes read (BYTES_READ)  The number of bytes read by the filesystem by map and reduce tasks. There is a
counter for each filesystem, and Filesystem may be Local, HDFS, S3, etc.

Filesystem bytes written The number of bytes written by the filesystem by map and reduce tasks.

(BYTES_WRITTEN)

Filesystem read ops (READ_OPS) The number of read operations (e.g., open, file status) by the filesystem by map and
reduce tasks.

Filesystem large read ops The number of large read operations (e.g., list directory for a large directory) by the

(LARGE_READ_OPS) filesystem by map and reduce tasks.

Filesystem write ops (NRITE_OPS) The number of write operations (e.g., create, append) by the filesystem by map and
reduce tasks.

Table 9-4. Built-in FileInputFormat task counters

Counter Description

Bytes read (BYTES_READ) The number of bytes read by map tasks via the FileInputFormat.

Table 9-5. Built-in FileOutputFormat task counters

Bytes written The number of bytes written by map tasks (for map-only jobs) or reduce tasks via the
(BYTES_WRITTEN) FileOutputFormat.
Job counters

Job counters (Table 9-6) are maintained by the application master, so they don’t need
to be sent across the network, unlike all other counters, including user-defined ones.
They measure job-level statistics, not values that change while a task is running. For
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example, TOTAL_LAUNCHED_MAPS counts the number of map tasks that were launched
over the course of a job (including tasks that failed).

Table 9-6. Built-in job counters

Counter Description

Launched map tasks The number of map tasks that were launched. Includes tasks that were
(TOTAL_LAUNCHED_MAPS) started speculatively (see “Speculative Execution” on page 204).
Launched reduce tasks The number of reduce tasks that were launched. Includes tasks that were
(TOTAL_LAUNCHED_REDUCES) started speculatively.

Launched uber tasks The number of uber tasks (see “Anatomy of a MapReduce Job Run” on
(TOTAL_LAUNCHED_UBERTASKS) page 185) that were launched.

Maps in uber tasks (NUM_UBER_SUBMAPS) The number of maps in uber tasks.

Reduces in uber tasks The number of reduces in uber tasks.

(NUM_UBER_SUBREDUCES)

Failed map tasks (NUM_FAILED_MAPS) The number of map tasks that failed. See “Task Failure” on page 193 for

potential causes.
Failed reduce tasks (NUM_FAILED_REDUCES)  The number of reduce tasks that failed.
Failed uber tasks (NUM_FAILED_UBERTASKS) The number of uber tasks that failed.

Killed map tasks (NUM_KILLED_MAPS) The number of map tasks that were killed. See “Task Failure” on page 193
for potential causes.

Killed reduce tasks (NUM_KILLED_REDUCES)  The number of reduce tasks that were killed.
Data-local map tasks (DATA_LOCAL_MAPS) The number of map tasks that ran on the same node as their input data.

Rack-local map tasks (RACK_LOCAL_MAPS) The number of map tasks that ran on a node in the same rack as their
input data, but were not data-local.

Other local map tasks (OTHER_LOCAL_MAPS)  The number of map tasks that ran on a node in a different rack to their
input data. Inter-rack bandwidth is scarce, and Hadoop tries to place map
tasks close to their input data, so this count should be low. See Figure 2-2.

Total time in map tasks (MILLIS_MAPS) The total time taken running map tasks, in milliseconds. Includes tasks
that were started speculatively. See also corresponding counters for
measuring core and memory usage (VCORES_MILLIS_MAPS and
MB_MILLIS_MAPS).

Total time in reduce tasks (MILLIS_REDUCES) The total time taken running reduce tasks, in milliseconds. Includes tasks
that were started speculatively. See also corresponding counters for
measuring core and memory usage (VCORES_MILLIS_REDUCES and
MB_MILLIS_REDUCES).

User-Defined Java Counters

MapReduce allows user code to define a set of counters, which are then incremented as
desired in the mapper or reducer. Counters are defined by a Java enum, which serves
to group related counters. A job may define an arbitrary number of enums, each with
an arbitrary number of fields. The name of the enum is the group name, and the enum’s
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fields are the counter names. Counters are global: the MapReduce framework aggregates
them across all maps and reduces to produce a grand total at the end of the job.

We created some counters in Chapter 6 for counting malformed records in the weather
dataset. The program in Example 9-1 extends that example to count the number of
missing records and the distribution of temperature quality codes.

Example 9-1. Application to run the maximum temperature job, including counting
missing and malformed fields and quality codes

public class MaxTemperatureWithCounters extends Configured implements Tool {

enum Temperature {
MISSING,
MALFORMED

}

static class MaxTemperatureMapperWithCounters
extends Mapper<LongWritable, Text, Text, IntWritable> {

private NcdcRecordParser parser = new NcdcRecordParser();

protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

parser.parse(value);

if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
context.write(new Text(parser.getYear()),

new IntWritable(airTemperature));

} else if (parser.isMalformedTemperature()) {
System.err.println("Ignoring possibly corrupt input:
context.getCounter(Temperature.MALFORMED).increment(1);

} else if (parser.isMissingTemperature()) {
context.getCounter(Temperature.MISSING).increment(1);

}

+ value);

// dynamic counter
context.getCounter("TemperatureQuality", parser.getQuality()).increment(1);

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
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job.setMapperClass(MaxTemperatureMapperWithCounters.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureWithCounters(), args);
System.exit(exitCode);
}
}

The best way to see what this program does is to run it over the complete dataset:

% hadoop jar hadoop-examples.jar MaxTemperatureWithCounters \
input/ncdc/all output-counters

When the job has successfully completed, it prints out the counters at the end (this is
done by the job client). Here are the ones we are interested in:

Air Temperature Records
Malformed=3
Missing=66136856

TemperatureQuality
0=1
1=973422173
2=1246032
4=10764500
5=158291879
6=40066
9=66136858

Notice that the counters for temperature have been made more readable by using a
resource bundle named after the enum (using an underscore as a separator for nested
classes)—in this case MaxTemperatureWithCounters_Temperature.properties, which
contains the display name mappings.

Dynamic counters

The code makes use of a dynamic counter—one that isn’t defined by a Java enum. Be-
cause a Java enum’s fields are defined at compile time, you can’t create new counters on
the fly using enums. Here we want to count the distribution of temperature quality
codes, and though the format specification defines the values that the temperature
quality code can take, it is more convenient to use a dynamic counter to emit the values
thatitactually takes. The method we use on the Context object takes a group and counter
name using String names:

public Counter getCounter(String groupName, String counterName)
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The two ways of creating and accessing counters—using enums and using strings—are
actually equivalent because Hadoop turns enums into strings to send counters over RPC.
Enums are slightly easier to work with, provide type safety, and are suitable for most
jobs. For the odd occasion when you need to create counters dynamically, you can use
the String interface.

Retrieving counters

In addition to using the web UI and the command line (using mapred job -counter),
you can retrieve counter values using the Java API. You can do this while the job is
running, although it is more usual to get counters at the end of a job run, when they are
stable. Example 9-2 shows a program that calculates the proportion of records that have
missing temperature fields.

Example 9-2. Application to calculate the proportion of records with missing tempera-

ture fields

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.util.*;

public class MissingTemperatureFields extends Configured implements Tool {

public int run(String[] args) throws Exception {

if (args.length != 1) {
JobBuilder.printUsage(this, "<job ID>");
return -1;

}

String jobID = args[0];

Cluster cluster = new Cluster(getConf());

Job job = cluster.getJob(JobID.forName(jobID));

if (job == null) {
System.err.printf("No job with ID %s found.\n", jobID);
return -1;

}

if (!job.isComplete()) {
System.err.printf("Job %s is not complete.\n", jobID);
return -1;

}

Counters counters = job.getCounters();

long missing = counters.findCounter(
MaxTemperatureWithCounters.Temperature.MISSING).getValue();

long total = counters.findCounter(TaskCounter.MAP_INPUT_RECORDS).getValue();

System.out.printf("Records with missing temperature fields: %.2f%%\n",
100.0 * missing / total);
return 0;
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public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MissingTemperatureFields(), args);
System.exit(exitCode);
}
}

First we retrieve a Job object from a Cluster by calling the getJob() method with the
job ID. We check whether there is actually a job with the given ID by checking if it is
null. There may not be, either because the ID was incorrectly specified or because the
job is no longer in the job history.

After confirming that the job has completed, we call the Job’s getCounters() method,
which returns a Counters object encapsulating all the counters for the job. The Counters
class provides various methods for finding the names and values of counters. We use
the findCounter () method, which takes an enum to find the number of records that
had a missing temperature field and also the total number of records processed (from
a built-in counter).

Finally, we print the proportion of records that had a missing temperature field. Here’s
what we get for the whole weather dataset:

% hadoop jar hadoop-examples.jar MissingTemperatureFields job_1410450250506_0007
Records with missing temperature fields: 5.47%

User-Defined Streaming Counters

A Streaming MapReduce program can increment counters by sending a specially for-
matted line to the standard error stream, which is co-opted as a control channel in this
case. The line must have the following format:

reporter:counter:group,counter,amount

This snippet in Python shows how to increment the “Missing” counter in the “Tem-
perature” group by 1:

sys.stderr.write("reporter:counter:Temperature,Missing,1\n")
In a similar way, a status message may be sent with a line formatted like this:

reporter:status:message

Sorting

The ability to sort data is at the heart of MapReduce. Even if your application isn't
concerned with sorting per se, it may be able to use the sorting stage that MapReduce
provides to organize its data. In this section, we examine different ways of sorting
datasets and how you can control the sort order in MapReduce. Sorting Avro data is
covered separately, in “Sorting Using Avro MapReduce” on page 363.
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Preparation

We are going to sort the weather dataset by temperature. Storing temperatures as Text
objects doesn't work for sorting purposes, because signed integers dont sort
lexicographically.! Instead, we are going to store the data using sequence files whose
IntWritable keys represent the temperatures (and sort correctly) and whose Text
values are the lines of data.

The MapReduce job in Example 9-3 isa map-onlyjob that also filters the input to remove
records that don't have a valid temperature reading. Each map creates a single block-
compressed sequence file as output. It is invoked with the following command:

% hadoop jar hadoop-examples.jar SortDataPreprocessor input/ncdc/all \
input/ncdc/all-seq

Example 9-3. A MapReduce program for transforming the weather data into Sequence-
File format

public class SortDataPreprocessor extends Configured implements Tool {

static class CleanerMapper
extends Mapper<LongWritable, Text, IntWritable, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

parser.parse(value);
if (parser.isValidTemperature()) {
context.write(new IntWritable(parser.getAirTemperature()), value);
}
}
}

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setMapperClass(CleanerMapper.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);

1. One commonly used workaround for this problem—particularly in text-based Streaming applications—is
to add an offset to eliminate all negative numbers and to left pad with zeros so all numbers are the same
number of characters. However, see “Streaming” on page 266 for another approach.
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job.setNumReduceTasks(0);

job.setOutputFormatClass(SequenceFileQutputFormat.class);

SequenceFileOutputFormat.setCompressOutput(job, true);

SequenceFileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

SequenceFileOutputFormat.setOutputCompressionType(job,
CompressionType.BLOCK);

return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortDataPreprocessor(), args);
System.exit(exitCode);
}
}

Partial Sort

In “The Default MapReduce Job” on page 214, we saw that, by default, MapReduce will
sort input records by their keys. Example 9-4 is a variation for sorting sequence files
with IntWritable keys.

Example 9-4. A MapReduce program for sorting a SequenceFile with IntWritable keys
using the default HashPartitioner

public class SortByTemperatureUsingHashPartitioner extends Configured
implements Tool {

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setInputFormatClass(SequenceFileInputFormat.class);

job.setOutputKeyClass(IntWritable.class);

job.setOutputFormatClass(SequenceFileOutputFormat.class);

SequenceFileQutputFormat.setCompressOutput(job, true);

SequenceFileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

SequenceFileOutputFormat.setOutputCompressionType(job,
CompressionType.BLOCK);

return job.waitForCompletion(true) ? 0 : 1;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortByTemperatureUsingHashPartitioner(),
args);
System.exit(exitCode);
}
}
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Controlling Sort Order

The sort order for keys is controlled by a RawComparator, which is found as follows:

1. If the property mapreduce.job.output.key.comparator.class is set, either ex-
plicitly or by calling setSortComparatorClass() on Job, then an instance of that
class is used. (In the old API, the equivalent method is setOutputKeyComparator
Class() on JobConf.)

2. Otherwise, keys must be a subclass of WritableComparable, and the registered
comparator for the key class is used.

3. If there is no registered comparator, then a RawComparator is used. The RawCompa
rator deserializes the byte streams being compared into objects and delegates to
the WritableComparable’s compareTo() method.

These rules reinforce the importance of registering optimized versions of RawCompara
tors for your own custom Writable classes (which is covered in “Implementing a Raw-
Comparator for speed” on page 123), and also show that it’s straightforward to override
the sort order by setting your own comparator (we do this in “Secondary Sort” on page
262).

Suppose we run this program using 30 reducers:

% hadoop jar hadoop-examples.jar SortByTemperatureUsingHashPartitioner \
-D mapreduce.job.reduces=30 input/ncdc/all-seq output-hashsort

This command produces 30 output files, each of which is sorted. However, there is no
easy way to combine the files (by concatenation, for example, in the case of plain-text
files) to produce a globally sorted file.

For many applications, this doesn’t matter. For example, having a partially sorted set of
files is fine when you want to do lookups by key. The SortByTemperatureToMapFile
and LookupRecordsByTemperature classes in this book’s example code explore this idea.
By using a map file instead of a sequence file, it’s possible to first find the relevant
partition that a key belongs in (using the partitioner), then to do an efficient lookup of
the record within the map file partition.

2. See “Sorting and merging SequenceFiles” on page 132 for how to do the same thing using the sort program
example that comes with Hadoop.
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Total Sort

How can you produce a globally sorted file using Hadoop? The naive answer is to use
a single partition.’ But this is incredibly inefficient for large files, because one machine
has to process all of the output, so you are throwing away the benefits of the parallel
architecture that MapReduce provides.

Instead, it is possible to produce a set of sorted files that, if concatenated, would form
a globally sorted file. The secret to doing this is to use a partitioner that respects the
total order of the output. For example, if we had four partitions, we could put keys for
temperatures less than —10°C in the first partition, those between -10°C and 0°C in the
second, those between 0°C and 10°C in the third, and those over 10°C in the fourth.

Although this approach works, you have to choose your partition sizes carefully to
ensure that they are fairly even, so job times aren’t dominated by a single reducer. For
the partitioning scheme just described, the relative sizes of the partitions are as follows:

Temperature range < -10°C [=10°C, 0°C) [0°C, 10°C) >=10°C
Proportion of records 11% 13% 17% 59%

These partitions are not very even. To construct more even partitions, we need to have
a better understanding of the temperature distribution for the whole dataset. It’s fairly
easy to write a MapReduce job to count the number of records that fall into a collection
of temperature buckets. For example, Figure 9-1 shows the distribution for buckets of
size 1°C, where each point on the plot corresponds to one bucket.

Although we could use this information to construct a very even set of partitions, the
fact that we needed to run a job that used the entire dataset to construct them is not
ideal. It’s possible to get a fairly even set of partitions by sampling the key space. The
idea behind sampling is that you look at a small subset of the keys to approximate the
key distribution, which is then used to construct partitions. Luckily, we don’t have to
write the code to do this ourselves, as Hadoop comes with a selection of samplers.

The InputSampler class defines a nested Sampler interface whose implementations
return a sample of keys given an InputFormat and Job:

public interface Sampler<K, V> {
K[] getSample(InputFormat<K, V> inf, Job job)
throws IOException, InterruptedException;

3. Abetter answer is to use Pig (“Sorting Data” on page 465), Hive (“Sorting and Aggregating” on page 503), Crunch,
or Spark, all of which can sort with a single command.
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Figure 9-1. Temperature distribution for the weather dataset

This interface usually is not called directly by clients. Instead, the writePartition
File() static method on InputSampler is used, which creates a sequence file to store
the keys that define the partitions:

public static <K, V> void writePartitionFile(Job job, Sampler<K, V> sampler)
throws IOException, ClassNotFoundException, InterruptedException

The sequence file is used by TotalOrderPartitioner to create partitions for the sort
job. Example 9-5 puts it all together.

Example 9-5. A MapReduce program for sorting a SequenceFile with IntWritable keys
using the TotalOrderPartitioner to globally sort the data

public class SortByTemperatureUsingTotalOrderPartitioner extends Configured
implements Tool {

public int run(String[] args) throws Exception {
Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (job == null) {
return -1;

}

job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
SequenceFileQutputFormat.setCompressOutput(job, true);
SequenceFileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
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SequenceFileOutputFormat.setOutputCompressionType(job,
CompressionType.BLOCK);

job.setPartitionerClass(TotalOrderPartitioner.class);

InputSampler.Sampler<IntWritable, Text> sampler =
new InputSampler.RandomSampler<IntWritable, Text>(0.1, 10000, 10);

InputSampler.writePartitionFile(job, sampler);

// Add to DistributedCache

Configuration conf = job.getConfiguration();

String partitionFile = TotalOrderPartitioner.getPartitionFile(conf);
URI partitionUri = new URI(partitionFile);
job.addCacheFile(partitionUri);

return job.waitForCompletion(true) ? 0 : 1;

3

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(
new SortByTemperatureUsingTotalOrderPartitioner(), args);
System.exit(exitCode);
}
}

We use a RandomSampler, which chooses keys with a uniform probability—here, 0.1.
There are also parameters for the maximum number of samples to take and the maxi-
mum number of splits to sample (here, 10,000 and 10, respectively; these settings are
the defaults when InputSampler is run as an application), and the sampler stops when
the first of these limits is met. Samplers run on the client, making it important to limit
the number of splits that are downloaded so the sampler runs quickly. In practice, the
time taken to run the sampler is a small fraction of the overall job time.

The InputSampler writes a partition file that we need to share with the tasks running
on the cluster by adding it to the distributed cache (see “Distributed Cache” on page
274).

On one run, the sampler chose -5.6°C, 13.9°C, and 22.0°C as partition boundaries (for
four partitions), which translates into more even partition sizes than the earlier choice:
Temperaturerange < -5.6°C [-5.6°C,13.9°C) [13.9°C,22.0°C) >=22.0°C
Proportion of records 29% 24% 23% 24%
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Your input data determines the best sampler to use. For example, SplitSampler, which
samples only the first n records in a split, is not so good for sorted data,* because it
doesn't select keys from throughout the split.

On the other hand, IntervalSampler chooses keys at regular intervals through the split
and makes a better choice for sorted data. RandomSampler is a good general-purpose
sampler. If none of these suits your application (and remember that the point of sampling
is to produce partitions that are approximately equal in size), you can write your own
implementation of the Sampler interface.

One of the nice properties of InputSampler and TotalOrderPartitioner is that you
are free to choose the number of partitions—that is, the number of reducers. However,
TotalOrderPartitioner will work only if the partition boundaries are distinct. One
problem with choosing a high number is that you may get collisions if you have a small
key space.

Here’s how we run it:

% hadoop jar hadoop-examples.jar SortByTemperatureUsingTotalOrderPartitioner \
-D mapreduce.job.reduces=30 input/ncdc/all-seq output-totalsort

The program produces 30 output partitions, each of which is internally sorted; in ad-
dition, for these partitions, all the keys in partition i are less than the keys in partition
i+1.

Secondary Sort

The MapReduce framework sorts the records by key before they reach the reducers. For
any particular key, however, the values are not sorted. The order in which the values
appear is not even stable from one run to the next, because they come from different
map tasks, which may finish at different times from run to run. Generally speaking,
most MapReduce programs are written so as not to depend on the order in which the
values appear to the reduce function. However, it is possible to impose an order on the
values by sorting and grouping the keys in a particular way.

To illustrate the idea, consider the MapReduce program for calculating the maximum
temperature for each year. If we arranged for the values (temperatures) to be sorted in
descending order, we wouldn't have to iterate through them to find the maximum;
instead, we could take the first for each year and ignore the rest. (This approach isn’t
the most efficient way to solve this particular problem, but it illustrates how secondary
sort works in general.)

4. In some applications, it’s common for some of the input to already be sorted, or at least partially sorted. For
example, the weather dataset is ordered by time, which may introduce certain biases, making the Random
Sampler a safer choice.
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To achieve this, we change our keys to be composite: a combination of year and
temperature. We want the sort order f